Abstract:
Power amplification devices are disclosed having a vertical ballast configuration to prevent thermal runaway in at least one stack of bipolar transistors formed on a semiconductor substrate. To provide a negative feedback to prevent thermal runaway in the bipolar transistors, a conductive layer is formed over and coupled to the stack. A resistivity of the conductive layer provides an effective resistance that prevents thermal runaway in the bipolar transistors. The vertical placement of the conductive layer allows for vertical heat dissipation and thus provides ballasting without concentrating heat.
Abstract:
To reduce a knee voltage of a Darlington amplifier, a negative voltage is applied by a depletion mode FET between the emitter of one amplifying transistor and the base of another amplifying transistor to provide a reduced potential, which reduces the knee voltage of the Darlington amplifier. Reducing the knee voltage of the Darlington amplifier decreases the size of a saturation region thereby increasing the linearity of the Darlington amplifier.
Abstract:
A first programmable frequency oscillator, which includes a first ramp comparator and programmable signal generation circuitry is disclosed. The programmable signal generation circuitry provides a ramping signal, which has a first frequency, based on a desired first frequency. The first ramp comparator receives the ramping signal and provides a first ramp comparator output signal based on the ramping signal. The first ramp comparator output signal is fed back to the programmable signal generation circuitry, such that the ramping signal is based on the desired first frequency and the first ramp comparator output signal. However, the first ramp comparator has a first propagation delay, which introduces a frequency error into the programmable frequency oscillator. Therefore, the first frequency is not proportional to one or more slopes of the ramping signal. As a result, the programmable signal generation circuitry compensates for the frequency error based on the desired first frequency.
Abstract:
Radio Frequency (RF) signal conditioning circuitry, which includes RF detection circuitry and RF attenuation circuitry is disclosed. The RF detection circuitry receives and detects an RF sample signal to provide an RF detection signal. The RF attenuation circuitry has an attenuation circuitry input, and receives and attenuates the RF sample signal via the attenuation circuitry input to provide an attenuated RF signal. The RF attenuation circuitry presents an attenuation circuitry input impedance at the attenuation circuitry input. The attenuated RF signal and the RF detection signal are provided concurrently.
Abstract:
A method is provided for optimizing Amplitude Modulation to Amplitude Modulation (AM/AM) and Amplitude Modulation to Phase Modulation (AM/PM) predistortion of a polar modulated transmit signal in a mobile terminal in order to optimize an Output Radio Frequency Spectrum (OFRS) of the mobile terminal. The AM/AM and AM/PM predistortion of the polar modulated transmit signal compensates for AM/AM and AM/PM distortion of a power amplifier in the transmit chain of the mobile terminal. However, the AM/AM and AM/PM distortion of the power amplifier cannot be easily measured or computed. Accordingly, the present invention provides a system and method for optimizing coefficients for polynomials defining the AM/AM and AM/PM predistortion of the polar modulated transmit signal based on optimizing the OFRS of the mobile terminal.
Abstract:
A power management system for a multi-carriers transmitter is disclosed. The power management system includes a first switcher having a control input and a power output, and a second switcher having a control input and a power output. Also included is a mode switch having a mode control input, wherein the mode switch is adapted to selectively couple the power output of the first switcher to the power output of the second switcher in response to a mode control signal received by the mode control input. Further included is a control system adapted to generate the mode control signal. The control system is coupled to the mode control input of the mode switch.
Abstract:
The present disclosure provides a system and method for controlling positioning of a movable member of a MEMS microactuator to reduce bouncing and ringing. The system includes control circuitry in communication with the MEMS microactuator. The control circuitry is adapted to linearly increase an actuation signal from a first state to a second state to urge the movable member from a first position to a second position and hold the movable member in the second position. The control circuitry is further adapted to linearly decrease the actuation signal from the second state to the first state to release the movable member to the first position. A transition time is not less than the inverse of one quarter of a natural frequency of the movable member as the movable member moves to the first position.
Abstract:
An automatically configurable 2-wire/3-wire serial communications interface (AC23SCI), which includes start-of-sequence (SOS) detection circuitry and sequence processing circuitry, is disclosed. When the SOS detection circuitry is coupled to a 2-wire serial communications bus, the SOS detection circuitry detects an SOS of a received sequence based on a serial data signal and a serial clock signal. When the SOS detection circuitry is coupled to a 3-wire serial communications bus, the SOS detection circuitry detects the SOS of the received sequence based on a chip select (CS) signal. The SOS detection circuitry provides an indication of detection of the SOS to the sequence processing circuitry, which initiates processing of the received sequence using the serial data signal and the serial clock signal upon the detection of the SOS. As such, the AC23SCI automatically configures itself for operation with some 2-wire and some 3-wire serial communications buses without external intervention.
Abstract:
A RF switch may be used as a power splitter in order to allow WLAN and Bluetooth (BT) coexistence. Multiple branches of the RF switch are enabled concurrently, which allows WLAN and BT signals to be received simultaneously. The RF switch functions as a power splitter to split signals received from an antenna to both a WLAN receiver and a BT receiver. In one embodiment, a second switch may be placed on an output of a low noise amplifier (LNA). This configuration will operate as a power splitter between WLAN receiver port and a BT port, and maximize the receiver sensitivity by amplifying both the WLAN and BT signals. One or both of the two switches may also function to bypass the LNA when the LNA is not needed to provide a low loss RF path, which serves to broaden the dynamic range of the device and avoid signal distortion during periods of increased signal power.
Abstract:
A radio frequency (RF) switch adapted to reduce third order intermodulation (IM3) products generated as RF signals propagate through the RF switch is disclosed. The RF switch includes N semiconductor switch segments, and N−1 phase shift networks, individual ones of the N−1 phase shift networks being coupled between adjacent ones of the N semiconductor switch segments where N is a natural number greater than 1. In operation, when the RF switch is on, IM3 products generated by the RF switch propagating through the N−1 phase shift networks are phase shifted such that the IM3 products are at least partially canceled.