摘要:
Magnetic nanoparticle compositions are provided which provide an inherent temperature regulator for use in magnetic heating, particularly for use in magnetic hyperthermia medical treatments. The composition includes magnetic nanoparticles having a Curie temperature of between 40 and 46° C., preferably about 42° C., and may further include a polymeric material and optionally a drug or radiosensitizing agent. Methods of hyperthermia treatment of a patient in need thereof are provided which include the steps of administering to the patient a composition comprising magnetic nanoparticles having a Curie temperature of between 40 and 46° C.; and exposing the magnetic nanoparticles in the patient to an alternating magnetic field effective to generate hysteresis heat in the nanoparticles.
摘要:
A combined radiotherapy and hyperthermia therapy is provided, including inducing hyperthermia in at least a portion of a target area—e.g., a tumor or a portion of a tumor or targeted cancerous cells—is provided. Biomolecules labeled with at least one radionuclide suitable for radiotherapy are provided and introduced into a patient; targeted RF absorption enhancers are provided and introduced into a patient; and a hyperthermia generating RF signal is directed via toward the target cells, thereby warming the radionuclide-labeled biomolecules and targeted RF absorption enhancers bound to target cells. The targeted RF absorption enhancers may, in a manner of speaking, add one or more RF absorption frequencies to cells in the target area, which will permit a hyperthermia generating RF signal at that frequency or frequencies to heat the targeted cells. Biomolecules labeled with at least one radionuclide suitable for radiotherapy may be used for both radiotherapy and as RF absorption enhancers for the hyperthermia generating RF signal.
摘要:
Apparatus and methods for treating body tissue by use of thermal treatment material. The thermal treatment material to be injected into target tissue of a body includes: a carrier substrate; a plurality of first particles operative to generate thermal energy in response to an alternating electromagnetic field applied external to the body; and a plurality of second particles, each of the second particles having a core and a coating surrounding the core. The coating is dissolved at a preset temperature by the thermal energy so that the visibility of the core in an external imaging system is affected as the coating is dissolved to expose the core. The variation of the visibility can be used as an indicator to determine if the material has reached the preset temperature.
摘要:
The present invention provides methods of using metal nanoparticles 0.5 to 400 nm in diameter to enhance the dose and effectiveness of x-rays or of other kinds of radiation in therapeutic regimes of ablating a target tissue, such as tumor. The metal nanoparticles can be administered intravenously, intra-arterially, or locally to achieve specific loading in and around the target tissue. The metal nanoparticles can also be linked to chemical and/or biochemical moieties which bind specifically to the target tissue. The enhanced radiation methods can also be applied to ablate unwanted tissues or cells ex vivo.
摘要:
Disclosed is an apparatus for ablating biological tissues, the apparatus is configured with a cannula, a balloon inflatable with a gaseous medium and coupled to the cannula, and an electromagnetic antenna coupled to the balloon operative to emit electromagnetic waves which heat the wall of the balloon. The wall is made from wave penetrating material impregnated with a plurality of wave absorbing particles which are heated to the desired ablation temperature by the absorbed electromagnetic waves.
摘要:
The invention relates to a method as well as to a system for the local heating of a target region of an object by varying the magnetization of magnetic or magnetizable substances. A magnetic field is then generated whose magnetic field strength varies in space in such a manner that a first sub-region (301) of low magnetic field strength and a second sub-region (302) which encloses the first sub-region and has a higher magnetic field strength are formed in the target region. Subsequently, the position in space of the two sub-regions in the target region is varied with a given frequency for so long that the particles are heated to a desired temperature due to frequent variation of the magnetization.
摘要:
A cell metamorphosing device includes micro dishes which serves as diaphragms and hold a mixed medium containing harmful cells and nano-scale particles, an AC voltage supply, a heater and an inductor. The AC voltage supply faces with the micro dishes 2 with a space, and applies a bias to the micro dishes 2, so that the nano-scale particles are bombarded onto the harmful cells and destroy them.
摘要:
Embodiments of the present invention are generally related to apparatus and methodology of thermal applicators in cancer therapy. In particular, the present embodiments are directed to a technique called “nanoparticle ferromagnetic resonance heating,” where ferromagnetic resonance heating in addition to an RF hyperthermia treatment is used to cause cell apoptosis and necrosis. An apparatus for carrying out a ferromagnetic resonance heating treatment of a tumor, comprises a volume concentration of super paramagnetic particles contained within the interior of the tumor, the concentration ranging from about 0.1 to about 1 percent; a magnetic field source configured to deliver a gradient DC magnetic field to the region of the tumor; and an energy source configured to deliver to the tumor an RF field at a frequency ranging from about 100 to 200 MHz. The apparatus of claim 1, wherein the super paramagnetic particles are selected from the group consisting of maghemite (γ-Fe2O3) based compounds, and yttrium iron garnet (Y3Fe5O12) based compounds.
摘要翻译:本发明的实施例通常涉及癌症治疗中的热敷装置的装置和方法。 特别地,本实施例涉及一种称为“纳米颗粒铁磁共振加热”的技术,其中使用除RF热疗处理之外的铁磁共振加热以引起细胞凋亡和坏死。 用于进行肿瘤的铁磁共振加热处理的装置包括包含在肿瘤内部的超顺磁性颗粒的体积浓度,其浓度范围为约0.1%至约1%; 磁场源,被配置为向所述肿瘤的区域递送梯度DC磁场; 以及能量源,其被配置为以大约100至200MHz的频率向所述肿瘤递送RF场。 2.根据权利要求1所述的设备,其中所述超顺磁性颗粒选自由以下物质组成的组:基于磁赤铁矿(γ-Fe 2 O 3 O 3)的化合物和钇铁石榴石(Y 3 sub> 5 sub> 12 sub> 12)基的化合物。
摘要:
A brachytherapy device includes a radiation source and a multi-cannula delivery system for implantation of the radiation source into a body tissue site. The radiation source may be, for example, a substantially straight round wire, a substantially straight flat wire, a detented wire, an embossed wire, a bristled wire, a shaped resilient wire, a twisted round wire, a twisted flat wire, or a coil with or without an inner core, and is adapted for implantation into a body tissue site and for delivery of radiation to the body tissue site. The multi-cannula delivery system includes an outer cannula, an outer stylet, an inner cannula, and an inner stylet. Different configurations of the radiation source according to embodiments of the invention improve distribution of the radiation field in the longitudinal direction and resistance to migration of the radiation source inside a patient's body. The multi-cannula delivery system provides for faster and more accurate placement of the radiation source.
摘要:
Disclosed are therapeutic methods for the treatment of disease material involving administration of a thermotherapeutic magnetic composition, which contains single-domain magnetic particles attached to a target-specific ligand, to a patient and application of an alternating magnetic field to inductively heat the thermotherapeutic magnetic composition. Also disclosed are methods of administering the thermotherapeutic magnetic material composition. The thermotherapeutic methods may be used where the predetermined target is associated with diseases, such as cancer, diseases of the immune system, and pathogen-borne diseases, and undesirable targets, such as toxins, reactions associated with organ transplants, hormone-related diseases, and non-cancerous diseased cells or tissue.