Abstract:
Apparatus and a method of providing a water-based fluid with active hydrogen having selected characteristics including providing at least one material (10) having selected characteristics and supply of hydrogen atoms from at least one material (10) to fluid, whereby the fluid receives hydrogen atoms from the material (10), which hydrogen atoms have the selected characteristics.
Abstract:
An improved laundry treatment system comprises a washer which is connected to discharge used water to a tank for filtration and recirculation to the washer, and a tank containing water for making up losses in the wash cycle, and an electrolytic cell therein comprising an enclosed compartment. The electrolytic cell comprises an enclosed compartment containing an anode and a cathode supported on the outside and inside respectively of an opening in the wall of the compartment open to the surrounding liquid when the compartment is immersed in the water in said tank for producing mixed oxidants dissolved in the make up water for oxidizing deleterious components without damaging the fabric being washed.
Abstract:
Stunning devices that apply a voltage potential across biological organisms to break cell membranes and disable the defense mechanisms of viral organisms in a liquid effluent to ultraviolet radiation, which in a system for reducing biological organisms to non-viable organic molecules along with: a cavitation chamber to physically destroy any remaining membranes of biologicals in the effluent that may play host to viral organisms or allow such to hide therein, the action of the stunning and cavitation chambers releasing cellular contents; and a molecularly implanted stimulated emitter (MISE) chamber in which high levels of ultraviolet radiation are applied to virions and spores that remain at frequencies that are readily absorbed and operate to disassociate any viable DNA and RNA strands remaining, causes "death" of microbes in the effluent. In the stunning devices, the effluent is pulsed through small areas between oppositely charged plates or in smaller embodiments, an outer tube and oppositely charged inner structure constructed to establish high potential field concentrations.
Abstract:
An electrolytic magnetization device has an outer pipe, an anode tube, a diaphragm, a cathode tube, an insulating tube, and a water flow controller. A cover and a base seat cover an upper end of the outer pipe and a lower end of the outer pipe respectively. The cover has a water outlet. The base seat has a through hole and a water inlet. The anode tube is disposed in the outer pipe. The diaphragm is disposed in the anode tube. A hollow pipe is disposed in the diaphragm. The insulating tube is disposed in the hollow pipe. The water flow controller has an inlet joint connected to the water inlet, a main body disposed beneath the inlet joint, a flow control post having a water passage, a water pressure stabilizer, an automatic switch device, a water drain device, a first outlet joint, and a second outlet joint. The automatic switch device has a switch seat. A micromotion switch is disposed on the switch seat.
Abstract:
A method for improving water quality including the steps of providing a supply of water to be treated and decreasing the redox potential of the water principally by supplying thereto atomic hydrogen.
Abstract:
A device for electrolyzing water includes pivots separately arranged on two ends of an insulating container, and a cylindrical cathode and a cylindrical anode are separately and respectively connected to the two pivots. The cathode and the anode are coaxial to the container and a plurality of through-holes are defined in sidewall of the anode and the cathode. A direct current (DC) source is provided to attach the two pivots so that the cathode and the anode are charged. A power source is provided to separately rotate the two pivots so as to rotate the anode and the cathode. The rotation velocity of the anode is different from that of cathode, thereby inducing a layer of dialytic film therebetween. Two input and output vents are separately and respectively defined in two ends of the container. An output vent is arranged on a side of the pivot connecting the anode so as to collect acidic electrolyzed water.
Abstract:
The method for producing electrolyzed water includes the step of applying a voltage to electrodes disposed in an electrolytic cell containing therein pure water including electrolyte therein. A strength of an electric field generated by applying a voltage to the electrodes is controlled to be variable by means of various techniques. The method makes it possible to produce electrolyzed water with a smaller amount of energy than prior methods.
Abstract:
An electrochemical cell (20) which is effectively leakproof and can be incorporated into an easily serviceable cell pack (80). Within the cell are a plurality of parallel electrode plates (44, 46, 56) which act as anode and cathode reaction surfaces for processing chemicals. The electrochemical cell housing (33) is preferably formed of durable plastic with all fluid inlets (36, 38) and outlets (40, 42) on its upper face (30). One or more input manifolds (48, 50) are provided to route process chemicals to the bottom of the cell and then distribute them upward across the electrode plates. The housing is formed as a one-piece, monolithic structure with an opening left on top for fitting the top face. At the end of cell assembly, the top face is attached to the remainder of the cell housing so as to form a sealed cell.
Abstract:
A water dispenser including a water tank for storing water supplied from a water bottle; an electrolytic cell including an anode, a cathode, and a three-dimensional carbon electrode provided between the anode and the cathode, the electrolytic cell being provided downstream of the water tank; a water outlet valve provided downstream of the electrolytic cell; and a power supply for applying an electric current to the anode so as to polarize the electrode for sterilizing the water.
Abstract:
An improvement is proposed in the cleaning treatment of semiconductor silicon wafers in which the conventional step of cleaning with an aqueous solution of an acid is replaced with a cleaning treatment with a temporarily acidic pure water which is produced electrolytically by the application of a DC voltage between an anode and a cathode bonded to the surfaces of a hydrogen-ion exchange membrane so that the acidic cleaning treatment can be performed under mild conditions so as to eliminate the troubles unavoidable in the conventional process. The apparatus used therefor comprises a rectangular vessel partitioned into a central anode compartment, in which the wafers are held in a vertical disposition within an upflow of pure water, and a pair of cathode compartments on both sides of the anode compartment by partitioning with a pair of hydrogen-ion exchange membranes, on both sides of which an anode plate and a cathode plate are bonded.