Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
Fluorine-containing synthetic quartz glass is produced by feeding silica-forming material, hydrogen, and oxygen gases from a burner to a reaction zone, flame hydrolyzing the silica-forming material in the reaction zone to form particles of silica, depositing the silica particles on a rotatable substrate in the reaction zone to form a porous silica matrix, and heating and vitrifying the porous silica matrix in a fluorine compound gas-containing atmosphere. During formation of the porous silica matrix, the angle between the center axes of the silica matrix and the silica-forming reactant flame from the burner is adjusted to 90–120° so that the porous silica matrix has a density of 0.1–1.0 g/cm3 with a narrow distribution within 0.1 g/cm3. The resulting quartz glass has a high transmittance to light in the vacuum ultraviolet region below 200 nm.
Abstract translation:含氟合成石英玻璃是通过将二氧化硅形成材料,氢气和氧气从燃烧器送入反应区而产生的,火焰水解反应区中二氧化硅形成材料,形成二氧化硅颗粒,将二氧化硅颗粒沉积在 反应区中的可旋转基底,形成多孔二氧化硅基质,并在含氟化合物气体的气氛中加热和玻璃化多孔二氧化硅基质。 在形成多孔二氧化硅基体期间,将二氧化硅基体的中心轴线与来自燃烧器的形成二氧化硅的反应物火焰之间的角度调节至90-120°,使得多孔二氧化硅基质的密度为0.1-1.0g / cm 3,窄分布在0.1g / cm 3以内。 所得的石英玻璃对于低于200nm的真空紫外线区域的光具有高透射率。
Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
It is an object of the present invention to provide a hydrogen-doped silica powder that is useful in the formation of a quartz glass crucible that is capable of pulling a silicon single crystal without causing a state having dislocations in the silicon single crystal due to peeling of quartz glass segment. It is a further object of the invention to provide a quartz glass crucible for use in pulling a silicon single crystal whose inner surface is formed by use of the hydrogen-doped silica powder and a producing method of the silica powder.In order to achieve the objects above, the present invention provides a hydrogen-doped silica powder for use in producing a quartz glass crucible for use in pulling a silicon single crystal, wherein the silica powder is made of synthetic silica powder, natural silica powder or a mixture thereof, with a hydrogen concentration being in the range of 1×1017 to 5×1019 molecules/cm3, and a producing method thereof, and a quartz glass crucible for pulling a silicon single crystal whose inner surface is made of the silica powders.
Abstract:
The invention provides a method for efficiently manufacturing a synthetic silica glass substrate for photomasks excellent in light stability and capable of being applied to ArF-Wet photolithography with maximum birefringence of 1.4 nm/cm or less, homogeneity of diffractive index of 2×10−5 or less and an average content of hydrogen atoms of 1018 to 1019, comprising the steps of: forming a mask-plain substrate by slicing a block of a synthetic silica glass; heating each sheet of the mask-plain substrate at a temperature of 1100° C. or more; slowly cooling the substrate at a cooling rate of 0.01 to 0.8° C./min; and placing the substrate in a hydrogen gas atmosphere at least at the latter half of the slow cooling step or after the slow cooling step.
Abstract:
An ultra-high pressure discharge lamp in which the disadvantage of the reduction of the illuminance maintenance factor due to formation of blackening and milky opacification in the discharge vessel and the disadvantage of formation of cracks in the discharge vessel is eliminated by the discharge vessel being made of a silica glass that contains 0.1 ppm by weight to 290 ppm by weight hydrogen. Further advantages are obtained by the silica glass having a content of OH radicals that is at most 1 ppm by weight and a content of aluminum in a range of 2 ppm by weight to 30 ppm by weight.
Abstract:
Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength less than about 250 nm and particularly, exhibiting a low laser induced wavefront distortion; specifically a laser induced wavefront distortion, measured at 633 nm, of between about −1.0 and 1.0 nm/cm when subjected to 10 billion pulses of a laser operating at approximately 193 nm and at a fluence of approximately 70 μJ/cm2. The synthetic silica glass optical material of the present invention comprises OH concentration levels of less than about 600 ppm, preferably less than 200 ppm, and H2 concentration levels less than about 5.0×1017 molecules/cm3,and preferably less than about 2.0×1017 molecules/cm3.
Abstract translation:公开了一种合成石英玻璃光学材料,其特征在于波长小于约250nm,特别是具有低激光诱导波前失真的紫外线波长范围内具有高抗紫外线辐射的光学损伤, 特别是在经受100nm脉冲激光在约193nm下操作的激光诱导波前失真(在633nm处),介于约-1.0和1.0nm / cm之间,并且流量约为70μJ/ cm 2 SUP>。 本发明的合成石英玻璃光学材料包含小于约600ppm,优选小于200ppm的OH浓度水平和小于约5.0×10 17 H 2 O 2浓度水平, SUP>分子/ cm 3,优选小于约2.0×10 17分子/ cm 3。
Abstract:
Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
Abstract:
A silica glass member of the present invention is one wherein when a composition thereof is expressed by SiOx, x is not less than 1.85 nor more than 1.95, wherein a concentration of hydrogen molecules included therein is not less than 1×1016 molecules/cm3 nor more than 5×1018 molecules/cm3, and wherein a difference A−B between an absorption coefficient A immediately before an end of irradiation with 1×104 pulses of ArF excimer laser light in an average one-pulse energy density of 2 mJ/cm2 and a second absorption coefficient B at 600 seconds after a stop of the irradiation with the ArF excimer laser light is not more than 0.002 cm−1. When this silica glass member is applied to an illumination optical system and/or a projection optical system in projection exposure apparatus, it becomes feasible to implement uniform exposure while reducing variation in illuminance on a reticle surface and in an exposure area on a wafer.
Abstract translation:本发明的石英玻璃构件是当其组成由SiO x表示时,x不小于1.85或不大于1.95,其中包含的氢分子的浓度不小于1×10 16分子/ cm <3>不超过5×10 18分子/ cm 3,并且其中在照射结束之前的吸收系数A与平均单脉冲中的1×10 4个ArF准分子激光脉冲之间的差AB 用ArF准分子激光照射停止600秒后的能量密度为2mJ / cm 2,第二吸收系数B为0.002cm -1以下。 当将该石英玻璃构件应用于投影曝光装置中的照明光学系统和/或投影光学系统时,可以实现均匀曝光,同时减小掩模版面和晶片上的曝光区域中的照度变化。
Abstract:
The present invention relates generally to UV (ultraviolet) photosensitive bulk glass, and particularly to batch meltable alkali boro-alumino-silicate and germanosilicate glasses. The photosensitive bulk glass of the invention exhibits photosensitivity to UV wavelengths below 300 nm. The photosensitivity of the alkali boro-alumino-silicate and germanosilicate bulk glasses to UV wavelengths below 300 nm provide for the making of refractive index patterns in the glass. With a radiation source below 300 nm, such a laser, refractive index patterns are formed in the glass. The inventive photosensitive optical refractive index pattern forming bulk glass allows for the formation of patterns in glass and devices which utilize such patterned glass.