Abstract:
The invention is a process for decomposing dried paint sludge to recover the organic and inorganic components of the paint sludge as gaseous, liquid, and composite materials. The process comprises drying the paint sludge to remove water and organic solvents, pyrolizing the dried paint sludge in an inert atmosphere in an elevated temperature of up to about 600.degree. C. to form gaseous and liquid decomposition materials and a solid residue. The process further comprises collecting the gaseous and liquid decomposition materials and subjecting the solid residue to sintering in an elevated temperate of about 900.degree. to 1300.degree. C. in an atmosphere of nitrogen, argon or ammonia to convert the solid residue to composite materials comprising barium nitranate and titanium compounds such as titanium dioxide, titanium nitride, and titanium carbide. The gaseous and liquid materials may be further pyrolyzed to carbon materials.
Abstract:
The invention provides a conductor comprising a reaction-sintered body of a conductive nitride produced from a powder of at least one metal selected from Ti, Zr, V, Nb, Ta, Cr, Ce, Co, Mn, Hf, W, Mo, Fe, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Th and Ni, and a process for producing such conductor by heating a molding containing a metal powder in a nitriding gaseous atmosphere containing no CO gas.
Abstract:
A process for forming ceramics comprises mixing titanium nitride with an average particle size less than 0.2 micron, zirconia having a particle size less than 1 micron and a stabilizing agent for stabilizing the zirconia in the tetragonal or cubic phase forming the mixture into a desired shape and firing at between 1300.degree. and 1700.degree. C.Preferably the stabilizing agent is in the form of coating on the zirconia.The process is suitable for forming hard and tough ceramics which are electroconducting and can be shaped by electro-discharge machining. It is particularly suitable for forming ceramics containing between 70 and 90% by weight titanium nitride.
Abstract:
A process for producing dense bodies from mixtures of materials with significantly different electrical resistivities. A mixture of electrically conducting powder and a dielectric or semiconducting powder is subjected to pressure and an intense electric current pulse of sufficiently short duration such that the heating is largely confined to the material of superior electrical conductivity. Densification is achieved under pressure prior to the attainment of thermal equilibrium within the mixture. Diamond/titanium diboride and boron carbide/titanium carbide composites are typical of the process.
Abstract:
Refractory and electroconductive ceramic compositions having a density higher than 4 g/cm.sup.3, ultimate tensile strength higher than 250 MPa, Vickers microhardness higher than 1000 kg/mm.sup.2 and electric resistivity lower than 600 microohm.cm, essentially consisting of alumina and of a nitride component of at least one transition metal belonging to groups IVB, VB or VIB of the Periodic Chart of the Elements.
Abstract:
Ceramic molding or casting powders, particularly nitride, oxide and carbide powders, that have substantial internal surface and volume produce improved dispersions after being coated with a cover material, such as polyethylene glycol, that reduces the specific surface area of the powder by at least about 10% and reduces the amount of penentration of the binder used for dispersion into the internal volume of the powder. The viscosity of dispersions of such coated powders, or of conventional uncoated ceramic powders, can be further reduced by treatment of the powders with organotitanate, organozirconate, or organosilane coupling agents that are chosen to interact favorably with the specific powders and binders used.
Abstract:
A method for refining powders comprising the steps of: (a) adding polytetrafluoroethylene powders to non-oxide ceramic powders to form a mixture by mixing; and (b) heating the mixture in non-oxidizing atmosphere to convert oxides existing on the surface of the non-oxide ceramic powders into gaseous fluorides, and removing gaseous fluorides. The fluororesin is a polytetrafluoroethylene resin. The heating temperature in the non-oxidizing atmosphere is 500.degree. C. to 1300.degree. C.
Abstract:
The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIIb, IVa, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C, N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics, thus-produced are superior in abrasion resistance and corrosion resistance. Furthermore, according to the present invention, particles of the same kind of metal as that used in constructing the ceramics comprising the above described metallic elements and nonmetallic elements are dispersed in a matrix comprising said ceramics to obtain metal dispersed reinforced ceramics in which both the matrix and the metallic particles are strongly and chemically bonded to each other. According to the latter procedure ceramic materials having high temperature characteristics, high corrosion resistance and high abrasion resistance, as well as high toughness and high impact resistance can be obtained.
Abstract:
Ceramic materials for cutting tools are described, comprising molding a powder mixture comprising (a) Al.sub.2 O.sub.3, (b) TiN, and (c) at least one of ZrC, Zr, and ZrN, wherein component (a) constitutes between 25 and 80% of the total volume of the powder mixture and the volume ratio of component (c) to component (b) is 1/2 or less, and sintering the molded powder in vacuum or in an inert atmosphere. A process for production thereof is also described.
Abstract translation:描述了用于切割工具的陶瓷材料,其包括模制包含(a)Al 2 O 3,(b)TiN和(c)ZrC,Zr和ZrN中的至少一种的粉末混合物,其中组分(a)构成25至80% 的粉末混合物的总体积和组分(c)与组分(b)的体积比为1/2以下,并且在真空或惰性气氛中烧结成型粉末。 还描述了其生产方法。
Abstract:
A refractory composition having a high resistance to corrosion by molten metal chlorides and chlorine gas at elevated temperatures. The composition comprises about 100 parts by weight of a nitride refractory filler, a suitable quantity of a colloidal sol binder and less than about 4 parts by weight of the oxides or hydroxides of magnesium, calcium, chromium and manganese.