摘要:
An exhaust heating apparatus (37) according to the present invention, for heating exhaust being led to an exhaust emission purifier (30) from an internal combustion engine (10) in which a first exhaust turbocharger (28) and a second exhaust turbocharger (29) that is mainly used in a lower rotational speed range of the engine than the first turbocharger are incorporated, is arranged in a first exhaust passage (26f) that is located further upstream than a confluent portion (27c) of the first exhaust passage, which passes through an exhaust turbine (28b) of the first turbocharger and continues to the exhaust emission purifier, and a second exhaust passage (26s), which goes around the exhaust turbine of the first turbocharger and passes through an exhaust turbine (29b) of the second turbocharger and continues to the exhaust emission purifier, and further downstream than the exhaust turbine of the first turbocharger.
摘要:
A SCR catalyst system, comprising a first SCR catalyst (1) and a second SCR catalyst (2) which is disposed in the exhaust gas tract downstream of the first SCR catalyst (1). At least one metering device (12) for metering in a reducing agent solution is disposed in the exhaust gas tract upstream of a first SCR catalysis element (13) of said first SCR catalyst (1). The SCR catalyst system does not require a device for metering a reducing agent solution into a second SCR catalysis element (21) of the second SCR catalyst (2).
摘要:
Systems and methods are disclosed that include an exhaust gas stream produced by an engine and an aftertreatment system including an SCR catalyst element receiving at least a portion of the exhaust gas stream. An exhaust outlet flow path has an inlet fluidly coupled to the exhaust gas stream at a position downstream of at least a portion of the SCR catalyst element that bypasses at least a portion of exhaust gas stream to provide for compositional measurement of the exhaust gas with a compositional sensor located downstream of a diagnostic catalyst positioned in the exhaust outlet flow path.
摘要:
An exhaust gas treatment device for off-road applications includes a housing having a cross-sectional area and a first wall. At least one pipe extends through the first wall and has a second wall with a perforation. The exhaust gas treatment device includes, in particular, a reducing agent supply for urea and an SCR catalytic converter. A method for producing a tube with a perforation for an exhaust gas treatment device and a watercraft having at least one exhaust gas treatment device are also provided.
摘要:
An arrangement and method for reducing the nitrogen oxide content in the exhaust gas of an internal combustion engine with the aid of ammonia and/or ammonia-releasing reduction agents, whereby ammonia and/or ammonia-containing reduction agent is added to the exhaust gas stream upstream of a catalyst combination composed of an SCR catalyst and a subsequent NH3-oxidation catalyst in such a way that a homogeneous mixture of exhaust gas and ammonia is present upstream of the SCR catalyst. To optimize the reaction or conversion of nitrogen oxides, disposed downstream of the combination of a first SCR catalyst and a first NH3-oxidation catalyst is at least one second catalyst having SCR activity in order in this way to reduce the nitrogen oxides formed at the first NH3-oxidation catalyst due to insufficient selectivity of the catalyst to nitrogen with not yet oxidized NH3.
摘要:
An aftertreatment system for an internal combustion engine includes a treatment device having a combined particulate filter and SCR catalyst. The combined particulate filter and SCR catalyst treats uncatalyzed exhaust from the internal combustion engine including between approximately 7 g NOx/kW-hr and approximately 10 g NOx/kW-hr.
摘要:
The invention provides an exhaust gas purification apparatus for an internal combustion engine which evenly diffuses a reducing agent over an entirety of the exhaust gas which flows into an NOx catalyst disposed on the downstream side of thereof. The exhaust gas purification apparatus includes an NOx catalyst disposed in an exhaust gas passage of an internal combustion engine, and a reducing agent injecting unit for injecting the reducing agent into the exhaust gas passage which is on an upstream side of the NOx catalyst. A narrowed portion, in which a cross-sectional area of a flow passage is smaller than a cross-sectional area of the exhaust gas passage and of the NOx catalyst, is provided on a downstream side of an injecting position by the reducing agent injecting unit and the upstream side of the NOx catalyst, and a reducing agent diffusing device is provided on the narrowed portion.
摘要:
PROBLEM TO BE SOLVED:To provide an exhaust purifying catalyst capable of efficiently purifying CO over a wide range of temperatures including a low temperature.MEANS TO SOLVE THE PROBLEM:An exhaust purifying apparatus of an internal combustion engine, comprising a CO oxidation catalyst disposed in the exhaust flow passage of an internal combustion engine and capable of oxidizing and thereby purifying CO in the exhaust, an HC adsorbent material for adsorbing HC in the exhaust, and an NOx adsorbent material for adsorbing NOx in the exhaust, these adsorbent materials being located on the upstream side in the exhaust flow direction with respect to the CO oxidation catalyst and disposed in order from the upstream, wherein the CO oxidation catalyst contains Pd and CeO2 and the amount of Pd supported is from 0.01 to 50 mass % based on CeO2.
摘要:
The selective reduction-type catalyst (SROC) has a lower catalyst layer (A) and an upper catalyst layer (B) at the surface of an integral structure-type carrier (C). the lower catalyst layer (A) contains the following components (i) a noble metal component, component (ii) alumina, titania, silica, zirconia, tungsten oxide, a transition metal oxide, a rare earth oxide, and a complex oxide thereof, and component (iii) zeolite. The upper catalyst layer (B) does not substantially contain the following component (i) and contains the following component (iii). The component (i) of the lower catalyst layer (A1) of the selective reduction-type catalyst (SROC1) at the forward stage contains a platinum component of 90% by weight or more in metal equivalent. The component (i) of the lower catalyst layer (A2) of the selective reduction-type catalyst (SROC2) at the backward stage contains a palladium component of 40% or more in metal equivalent.
摘要:
A system and method for NOx reduction is described, with a catalytic unit including a first zeolite catalyst with a first NOx conversion performance in a first temperature range and a second NOx conversion performance, lower than said first NOx conversion performance, in a second temperature range. The catalytic unit also comprises a second zeolite catalyst with a third NOx conversion performance, lower than said first NOx conversion performance, in the first temperature range and a fourth NOx conversion performance, higher than said second and third NOx conversion performances in the second temperature range, said first temperature range being higher than said second temperature range. The system further includes a controller configured to adjust an amount of reducing agent added to the NOx reducing system responsive to a temperature of the catalytic unit.