Abstract:
A multilayered pressure vessel (10) fabricated from at least one single ply sheet of flexible material (100) having an approximate longitudinal midline which divides the material into an inner portion (130) having an inner surface, an outer surface, an edge, a seam allowance, and a width, and an outer portion having an inner surface, an outer surface, an edge, a seam allowance, and a width. The width of the outer portion (120) is greater than the width of the inner portion (140). A primary seam (250) binds the outer portion and the inner portion to the material sheet at the midline proximate the outer portion edge and inner portion edge. The sheet (100) is wrapped into a continuous substantially 720 degree wrap to form a generally cylindrical vessel body having possible multiple fluid passageways, at the election of the user. The primary seam (250) is concealed.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The vessel may be formed in a variety of useful shapes and the tubes may have various internal and external cross-sections. The end caps may be filled with sintactic foam with canals leading to the passageway. Microtubes through the syntactic foam may connect the tubes to the passageway. The vessel is further strengthened by overwrapping with high-strength braiding material, hoop winding or by overlayment with high-strength fabric. The vessel is further strengthened by coating with plastic resin. Apparatus and methods for forming the cellular reservoir flexible vessels are described.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one end cap at a predetermined location. When subjected to overpressure it fails at the predetermined location. Other pressure relief devices include: a projecting member on the vessel surface, a weakened section of the passageway, a weakening or an absence of braiding material or hoop winding at a predetermined location on the vessel surface or along the passageway, a weakening or spreading of fibers in either the reinforcing panels or the flexible blankets covering the vessel.
Abstract:
A pressure regulated structure includes a first layer, a second layer, a non-metallic honeycomb assembly, and a vent. The honeycomb assembly is between the first layer and the second layer and includes a plurality of walls forming cells, at least some of the walls including laser-formed apertures to allow fluid communication between cells. The vent is fluidly coupled to the honeycomb assembly, wherein fluid in the cells of the honeycomb assembly may be removed through the vent to decrease pressure in the structure.
Abstract:
A method for storing natural gas by adsorption which comprises separating an available natural gas in an infrastructure side (10) into a low carbon number component mainly containing methane and ethane and a high carbon number component mainly containing propane, butane and the like, and storing the low carbon number component by adsorption in a first adsorption tank (16) and storing the high carbon number component by adsorption in a second adsorption tank (18). The method can solve the problem that the high carbon number component condenses within a pore of an adsorbing agent and hence the adsorption of the carbon number component, the main component of natural gas, is inhibited, and thus improves the storage density. Accordingly, the method can be used for ensuring a high storage density also for an available natural gas. An adsorbing agent for use in the method is also disclosed.
Abstract:
A storage container for cryogenic liquids has an outer container and at least one inner container, an insulation space being situated between the outer container and the inner container or containers. The outer container and/or the inner container have devices for strengthening the container walls. The devices for strengthening the container wall of the outer container and/or of the inner container are constructed as at least one web arranged on the container wall of the outer container and/or of the inner container and/or as at least one supporting plate adapted essentially to the cross-section of the inner container.
Abstract:
A litter for carrying a patient in a supine position, such as a stretcher or trauma board, includes a support panel and a pressure pack for providing a portable supply of medicinal gas, such as oxygen, that can be administered to a patient on the liter. The pressure pack includes a gas storage vessel formed from a plurality of polymeric hollow chamber having either en ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The storage vessel further includes a fluid transfer control system attached to the storage vessel for controlling fluid flow into and out of the pressure vessel and a gas delivery mechanism for delivering gas from the storage vessel to a user in a breathable manner.
Abstract:
A vehicle includes a storage pack for storing gas under pressure for providing an onboard supply of the pressurized gas. The pressurized gas may be used as a medicinal gas, e.g. oxygen, on emergency medical vehicles, or the gas may be used as a fuel source for a motorized vehicle having a motor that runs on combustible gas. The gas storage pack includes a pressure vessel formed from a plurality of hollow chambers, which have either an ellipsoidal or spherical shape, interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The gas storage pack further includes a gas transfer control system attached to the pressure vessel for controlling gas flow into and out of the pressure vessel.
Abstract:
A storage tank for a medium has a first volume provided for containing the gaseous medium and a second volume provided for at least receiving the liquid medium. A heater for heating the medium and inlet and outlet means for the medium are provided. The first volume is inside a first tank and the second volume is inside a second tank. The second tank is in fluid connection with said first tank via at least one fluid conduit and said second vessel is surrounded by said first vessel. The storage tank can store hydrogen for a fuel cell operated vehicle.
Abstract:
A pressure vessel having a housing forming a chamber of a polygonal cross-section, the sides of the housing being formed by at least one panel, the panel forming one side being connected to the panels forming an adjacent side by a connector assembly that permits the connected panels at the juncture of the connector assembly to pivot or move relative to one another in the substantial absence of any bending stress at such juncture, and a seal being used to form fluid-tight seals between adjacent sides.