Abstract:
A system to detect arcing faults in an electrical distribution system with a line conductor connected to a utility power transformer. The system monitors the rate of change of electrical current in the line conductor and produces a signal which represents the rate of change. The system produces a pulse each time the rate-of-change signal exceeds a selected threshold, filters the rate-of-change signal and/or the pulses to substantially eliminate a signal or pulse which represents changes in the electrical current outside a selected frequency range, monitors the remaining pulses to detect when the number of pulses that occur within a selected time interval exceeds a predetermined threshold, and generates an arc-fault-detection signal in response to the occurrence of a number of pulses which exceed the threshold within the selected time interval.
Abstract:
The stray inductance created by the loop formed by voltage sensing conductors connected to opposite ends of the bimetal in a miniature circuit breaker for determining load current is reduced by joining a voltage sense bar to the free end of the bimetal. The voltage sense bar extends beside the bimetal toward the fixed end of the bimetal where an insulated wire connected to the free end of the sense bar forms a twisted pair with an insulated wire secured to the fixed end of the bimetal.
Abstract:
Method and system allowing more accurate detection and identification of unwanted arcing include novel processing of signal voltage representing recovered power-line current. In one implementation, arc-faults are detected based on numerical analysis where individual cycles of line voltage and current are observed and data collected during each cycle is processed to estimate likelihood of presence of arc-event within each individual cycle based on pre-defined number of arc-events occurring within pre-defined number of contiguous cycles. In another implementation, fast transient current spikes detection can be done by: computing difference values between consecutive line-current samples collected over a cycle, average of differences, and peak-to-peak value of line-current; comparing each difference value to average of difference; comparing each difference value to peak-to-peak value; and, based on calculation of composite of two comparisons, using thresholds to determine if arcing is present within processed cycle.
Abstract:
Modular circuit protection devices and configurable panelboard systems include arc-free operation, thermal management features providing safe operation in hazardous environments at lower cost and without requiring conventional explosion-proof enclosures and without entailing series connected separately provided packages such as circuit breaker devices and starter motor contactors and controls.
Abstract:
Arc Fault Circuit Interrupter (AFCI), Ground Fault Circuit Interrupter (GFCI) or AF/GF circuit breakers which may optionally have relatively small or compact bodies that have shaped neutral busbars and/or load terminals with an arm that extends through a window of a current transformer in a circuit breaker housing. The neutral busbar and/or load terminal can have a rigid or semi-rigid shaped body with a first segment that extends through the window of the current transformer and a second segment that extends behind the first segment about a printed circuit board. A plug-on, pigtail or bolt-on neutral can engage an electrical pad of the neutral busbar.
Abstract:
A multi-pole circuit interrupter configured to be coupled between an AC source and an electric load electronically detects a hazardous condition associated with energizing of poles and responds to overcome the hazardous condition using a solenoid. The multi-pole circuit interrupter comprises a first switch to energize a first pole on a phase A conductor of the multi-pole circuit interrupter and a second switch to energize a second pole on a phase B conductor of the multi-pole circuit interrupter. The multi-pole circuit interrupter further comprises an electronic solid-state circuit coupled to the phase A conductor and the phase B conductor to detect a line voltage variation and control a current to a device in response to trip an energized pole among the first pole and the second pole if only one of the first pole and the second pole is energized when a user controls a tie bar to turn ON or turn OFF the multi-pole circuit interrupter or when a trip bar fails to trip one of the first pole and the second pole.
Abstract:
An electrical switching apparatus includes a transductor circuit that senses a direct current between an input terminal and an output terminal and outputs an alternating current proportional to the direct current. The electrical switching apparatus also includes a current sensor configured to sense an alternating current component of the direct current. The electrical switching apparatus further includes an alternating current electronic trip circuit including an arc fault detection circuit configured to detect an arc fault based on the sensed alternating current component. The alternating current electronic trip circuit is also configured to control pairs of separable contacts to trip open based on the alternating current output from the transductor circuit or the detected arc fault. The electrical switching apparatus also includes a power supply structured to provide direct current power to the alternating current electronic trip circuit.
Abstract:
A programmable arc fault circuit interrupter (AFCI) is provided. The programmable AFCI includes a dual resistive shunt array for developing inputs to an analog front end which in turn develops trigger quantities for input to a programmable processor. The programmable processor determines if the trigger quantities, singularly, or in the aggregate, exceed predetermined thresholds. Determining the predetermined thresholds are exceeded the processor issues a trigger command to momentarily energize a delatching coil, thus removing AC mains power from a load.
Abstract:
An electrical protection apparatus includes at least one first or main electrical protection function able to be carried out by a microcontroller and a button termed a test button intended to be actuated by a user to give rise to the implementation of the testing of at least one second electrical function, this implementation of the test being intended to give rise to the tripping of the protection apparatus D. The electrical protection apparatus includes a device for pooling the actuation of this test button with at least one action intended to carry out a third function, as a function of various types of action exerted on the test button, these actions being detected by the microcontroller, the aim being for the latter to give the order to carry out one of the third functions or else the testing of one of the second functions.
Abstract:
In one example, an arc fault circuit interrupter (AFCI) is provided. The AFCI may include a plurality of current arc signature detection blocks configured to output a plurality of corresponding current arc signatures, and a processor. The processor may be configured to receive each of the plurality of current arc signature from each of plurality of current arc signature detection blocks, respectively, and generate a first trigger signal. The processor may be further configured to assess each of the current arc signatures, determine whether an arc fault exists based on the assessment, and generate the first trigger signal if an arc fault is determined to exist. A method for detecting an arc fault is also provided.