Abstract:
Magnetic clips for use with a substrate holder for holding a substrate in a processing chamber of a plasma treatment system. The clip includes first and second body members each having a clamping surface and a magnet. The first body member is configured to be mechanically connected with the substrate holder. The second body member is pivotally connected by a hinge with the first body member for movement relative to the first body member between closed and opened positions. In the closed position, an edge region of the substrate is positioned between the clamping surfaces. In the opened position, the edge region is released. The magnet on the second body member magnetically attracts the magnet on the first body member, when the second body member is in the closed position, to apply a force that restrains movement of the edge region of the substrate relative to the clamping surfaces.
Abstract:
For the microscopy of an object using a combination of optical microscopy and particle beam microscopy, a microscope slide system comprises an electrically conductive holder, wherein at least one window is configured in the holder, and wherein the holder has the dimensions of a standard glass microscope slide for the optical microscopy; a microscope slide element, which is designed to carry the object for the microscopy and which is designed such that the element can be placed over the window; and a fastening device, which is designed to fix the microscope slide element over the window. By means of said microscope slide system, the object can be analyzed using separate microscopes, without having to relocate the object.
Abstract:
A focused ion beam apparatus, including: a sample holder provided with a fixing surface for fixing, via a deposition film, a micro-specimen extracted from a specimen using a method for fabrication by a focused ion beam, in which a width of the fixing surface is smaller than 50 microns; a specimen transferring unit having a probe to which the specimen can be joined through the deposition film, and transferring the micro-specimen extracted from the specimen by the focused ion-beam fabrication method, to the sample holder; and a sample chamber in which the sample, the sample holder and the probe are laid out, wherein, in the sample chamber, the micro-specimen extracted from the specimen by the focused ion-beam fabrication method is fixed to the fixing surface of the sample holder through the deposition film, and the micro-specimen fixed to the fixing surface is fabricated by irradiating the focused ion beam.
Abstract:
An ion-cut machine and method for slicing silicon ingots into thin wafers for solar cell manufacturing is set forth, amongst other embodiments and applications. One embodiment comprises two carousels: first carousel (100) adapted for circulating workpieces (55) under ion beam (10) inside target vacuum chamber (30) while second carousel (80) is adapted for carrying implanted workpieces through a sequence of process stations that may include annealing (60), cleaving (70), slice output (42), ingot replacement (52), handle bonding, cleaning, etching and others. Workpieces are essentially swapped between carousels. In one embodiment, the swapping system comprises a high throughput load lock (200) disposed in the wall of the vacuum chamber (30), a vacuum swapper (110) swapping workpieces between first carousel (100) and load lock (200), and an atmospheric swapper (90) swapping workpieces between load lock (200) and second carousel (80).
Abstract:
Methods and apparatus for cleaning electrostatic chucks in processing chambers are provided. The process comprises flowing a backside gas comprising a reactive agent into a zone in a process chamber, the zone defined by a space between a surface of an electrostatic chuck or of a cleaning station and a surface of a substrate. The surface of the electrostatic chuck is etched with the reactive agent to remove debris. An apparatus for cleaning an electrostatic chuck is also provided, the apparatus comprising: a process chamber; an elongate arm having a reach disposed through a wall of the process chamber; an electrostatic chuck attached to the elongate arm; a cleaning station located within the reach of the elongate arm; and a reactive gas source that is operatively connected to the cleaning station.
Abstract:
Devices, mounts, stages, interfaces and systems to be developed that allow for in situ manipulation, experimentation and analysis of specimens directly within an electron microscope.
Abstract:
A specimen fabrication apparatus, including: an ion beam irradiating optical system to irradiate a sample placed in a chamber, with an ion beam; a specimen holder to mount a specimen separated by the irradiation with the ion beam; a holder cassette to hold the specimen holder; a sample stage to hold the sample and the holder cassette; and a probe to move the specimen to the specimen holder, wherein the holder cassette is transferred to outside of the chamber in a condition of holding the specimen holder with the specimen mounted.
Abstract:
A transmission electron microscope (TEM) micro-grid includes a grid, a carbon nanotube film structure and two electrodes electrically connected to the carbon nanotube film structure.
Abstract:
An apparatus for increasing electric conductivity to a wafer substrate, when exposed to electron beam irradiation, is disclosed. More specifically, a methodology to breakdown the insulating layer on wafer backside is provided to significantly reduce the damage on the wafer backside while proceeding with the grounding process.
Abstract:
The present invention discloses an electrostatic chuck for clamping work substrates, said chuck comprising three layers, where the dielectric constant of included non-conductive layers is selected to provide overall lower capacitance to the chuck. In the chuck assembly of the present invention, the top dielectric layer that is in contact with a substrate, such as, a wafer, has a dielectric constant that is preferably greater than about 5, with a resistivity that is preferably greater than about 1E6 ohm.m, whereas the bottom dielectric layer has a dielectric constant that is preferably less than about 5 and a resistivity that is preferably greater than about 1E10 ohm.m. The intermediate layer preferably has a conductive layer where the resistivity is less than about 1 ohm.m.