Abstract:
A method for matching the impedance of the output impedance of a high-frequency power supply arrangement to the impedance of a plasma load includes, in a first impedance matching mode, matching the impedance of the output impedance of the high-frequency power supply arrangement by changing the frequency of the high-frequency signal produced. If the frequency is outside a specified frequency range, in a second impedance matching mode the impedance of the output impedance of the high-frequency power supply arrangement is matched by mechanically or electrically modifying a circuit which is arranged downstream of the high-frequency signal producer.
Abstract:
An ion implantation system and method are disclosed in which glitches in voltage are minimized by use of a modulated power supply system in the implanter. The modulated power supply system includes a traditional power supply and a control unit associated with each power supply, where the control unit is used to isolate the power supply from an electrode if a glitch or arc is detected. The control unit then restores connectivity after the glitch condition has been rectified.
Abstract:
An apparatus and method to inspect a defect of a substrate. Since a recess of an under layer of a substrate is darker than a projection of a top layer, a ratio of a value of a secondary electron signal (of an SEM) of the under layer to a value of the top layer may be increased to improve a pattern image used to inspect an under layer defect. Several conditions under which electron beams are irradiated may be set, and the pattern may be scanned under such conditions. Secondary electron signals may be generated according to the conditions and converted into image data to display various pattern images. Scan information on the images may be stored with positional information on the substrate. Each of scan information on the pattern images may be calculated to generate a new integrated image.
Abstract:
The invention relates to a charged particle lithography system comprising a beam generator for generating a plurality of charged particle beamlets, a beam stop array and a modulation device. The beam stop array has a surface for blocking beamlets from reaching a target surface and an aperture array in the surface for allowing beamlets to reach the target surface. The modulation device is arranged for modulating the beamlets by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. A surface area of the modulation device comprises an elongated beam area comprising an array of apertures and associated modulators, and a power interface area for accommodating a power arrangement for powering elements within the modulation device. The power interface area is located alongside a long side of the elongated beam area and extending in a direction substantially parallel thereto.
Abstract:
The present invention provides an inductively coupled, magnetically enhanced ion beam source, suitable to be used in conjunction with probe-forming optics to produce an ion beam without kinetic energy oscillations induced by the source.
Abstract:
The invention includes a high-voltage gas cluster ion beam (GCIB) processing system for treating a workpiece using a gas cluster ion beam. The high-voltage GCIB processing system includes a high-voltage (HV) source system that includes a high-voltage (HV) source chamber having a high-voltage (HV) nozzle subassembly, a nozzle element, and a high-voltage (HV) skimmer subassembly therein. The high-voltage gas cluster ion beam (GCIB) processing system includes a high-voltage (HV) power supply coupled to the HV nozzle subassembly and the HV skimmer subassembly. A high-voltage (HV) ionization chamber can be coupled to the HV source chamber and can include an ionizer coupled to the chamber wall by an isolation structure. In addition, a grounded GCIB processing chamber can be coupled to the HV ionization chamber by an isolation structure and can include a scanable workpiece holder.
Abstract:
The invention provides an apparatus and method of switching more than one bias voltage within an electron beam tube in order to achieve electron beam cutoff. The invention is particularly useful for high-perveance electron tubes in which a large change in focus-electrode-to-cathode or anode-cathode voltage might otherwise be needed to achieve cutoff. In one embodiment of the invention, the cathode and anode bias voltages are both switched by magnitudes well within the capabilities of standard high-voltage switches to achieve beam cutoff.
Abstract:
The present invention provides an inductively coupled, magnetically enhanced ion beam source, suitable to be used in conjunction with probe-forming optics to produce an ion beam without kinetic energy oscillations induced by the source.
Abstract:
The present invention is directed to a switch circuit and method to quickly enable or disable the ion beam to a wafer within an ion implantation system. The beam control technique may be applied to wafer doping repaint and duty factor reduction. The circuit and method may be used to quench an arc that may form between high voltage electrodes associated with an ion source to shorten the duration of the arc and mitigate non-uniform ion implantations. The circuit and method facilitates repainting the ion beam over areas where an arc was detected to recover dose loss during such arcing. A high voltage high speed switching circuit is added between each high voltage supply and its respective electrode to quickly extinguish the arc to minimize disruption of the ion beam. The high voltage switch is controlled by a trigger circuit which detects voltage or current changes to each electrode. Protection circuits for the HV switch absorb energy from reactive components and clamp any overvoltages.
Abstract:
In an ion bean acceleration system, transient electrical arc suppression and ion beam accelerator biasing circuitry. Two-terminal circuitry, connectable in series, for suppressing arcs by automatically sensing arc conditions and switch from at least a first operating state providing a relatively low resistance electrical pathway for current between source and load terminals to at least a second, relatively high resistance electrical pathway. Selection of circuit component characteristics permits controlling the delay in returning from the second state to the first state after the arc has been suppressed.