Abstract:
A wireless communication device that includes an interface and a processor; wherein the interface is arranged to receive input signals; wherein the processor is arranged to: calculate an input signal's attribute; and determine an attribute of a collision avoidance scheme in response to the input signal's attribute.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A method for voice triggering, the method may include coupling, by an interface of a voice trigger sensor, the voice trigger sensor to a computer; receiving, by the voice trigger sensor, from the computer configuration information; configuring the voice trigger sensor by using the configuration information; coupling, by the interface, the voice trigger sensor to a target device during a voice activation period; receiving, by a processor of the voice trigger sensor, during the voice activation period, input signals; applying, by the processor, on the input signals a voice activation process to detect a voice command; andat least partially participating in an execution of the voice command.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
The present invention is a novel and useful RF transformer based transmit/receive (TX/RX) integrated RF switch. In one embodiment of the invention, the TX/RX RF switch circuit is based on the use of an RF transformer which functions as (1) the PA output transformer during TX mode and (2) as a series inductance in an LNA matching network during receive mode. Thus, the RF transformer plays a dual function or role. Antenna diversity is achieved by having multiple antennas each having an associated antenna switch connected to the output transformer. The TX/RX switch of the invention reduces the number of switches required for antenna diversity to a minimum and minimizes RF losses in the system. The TX/RX switch is suitable for use with modern wireless communication standards such as DECT, 802.11 WLAN, Bluetooth, ZigBee, etc. The configuration of the TX/RX circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes.
Abstract:
A device, comprising a first interpolator that is configured to (a) receive, at a first clock rate, a first signal having a first sampling rate and (b) output, at a second clock rate, a second signal having a first desired sampling rate average; wherein the first interpolator comprises: a first buffer for storing the first signal; and a first fractional sampling ratio circuit that is configured to generate a first pattern of fixed point values, wherein an average value of the first pattern corresponds to a first desired sampling rate ratio between the first desired sampling rate average and the first sampling rate.
Abstract:
A communication system that includes a transmit antenna, a radio frequency (RF) phase shifting module, an RF combiner, a first receive antenna and a second receive antenna; wherein the first and second receive antennas are located at a same distance from the transmit antenna; wherein the first and second receive antennas are arranged to receive first and second leakage signals resulting from a transmission of RF radiation by the transmit antenna; wherein the RF phase shifting module is configured to receive signals from the first and second receive antennas, to phase shift signals from at least one of first and second receive antennas to provide intermediate RF signals; wherein the phase shift caused by the RF phase shifting module introduces a destructive phase shift between the first and second leakage signals; wherein the RF combiner is configured to add the intermediate RF signals to provide combined RF signals.
Abstract:
In a mobile device, a bone conduction or vibration sensor is used to detect the user's speech and the resulting output is used as the source for a low power Voice Trigger (VT) circuit that can activate the Automatic Speech Recognition (ASR) of the host device. This invention is applicable to mobile devices such as wearable computers with head mounted displays, mobile phones and wireless headsets and headphones which use speech recognition for the entering of input commands and control. The speech sensor can be a bone conduction microphone used to detect sound vibrations in the skull, or a vibration sensor, used to detect sound pressure vibrations from the user's speech. This VT circuit can be independent of any audio components of the host device and can therefore be designed to consume ultra-low power. Hence, this VT circuit can be active when the host device is in a sleeping state and can be used to wake the host device on detection of speech from the user. This VT circuit will be resistant to outside noise and react solely to the user's voice.
Abstract:
A method for transferring messages to wireless communication device, the method may include receiving, by an intermediate device, from a upstream device, a certain message awaiting indication that is indicative that a certain message is waiting to be sent to a certain wireless communication device; detecting, by the intermediate device, that the certain wireless communication device is in a wireless communication facilitating mode; requesting the certain wireless communication device, to re-enter the wireless communication facilitating mode at a certain time frame; retrieving the certain message from the upstream device; detecting, by the intermediate device, that the certain wireless communication device re-entered the wireless communication facilitating mode at the certain time frame; and wirelessly transmitting the certain message to the certain wireless communication device.