Abstract:
A semiconductor device including a first insulating layer and a second insulating layer sequentially disposed on a substrate is disclosed. A first conductive line and a second conductive line are disposed in the first insulating layer, and each of the first and second conductive lines has a first end and a second end, wherein the second ends of the first and second conductive lines are coupled to each other. A first winding portion and a second winding portion are disposed in the second insulating layer, and each of the first and second winding portions includes a third conductive line and a fourth conductive line arranged from the inside to the outside. Each of the third and fourth conductive lines has a first end and a second end, wherein the first and second conductive lines overlap at least a portion of the third conductive lines.
Abstract:
The present invention provides an electronic device including a write-once-then-read-only register, a chipset, a read-only memory, a flash memory and a central processor. The write-once-then-read-only register is arranged to store a determination value. The chipset is arranged to produce a CPU reset signal. The read-only memory is implemented in the chipset, and has a first memory block which corresponds to a predetermined address and is used to store a first instruction. The flash memory is coupled to the chipset, and has a second memory block which corresponds to the predetermined address and is used to store a second instruction. The central processor is arranged to determine the location of the predetermined address according to the CPU reset signal and the determination value.
Abstract:
A progress recording method and a corresponding recovering method adapted to an encoding operation performed on a storage area of a storage device are provided. The progress recording method includes the following steps. A variable set is initialized and stored. The encoding operation includes a plurality of sub-operations, and each of the sub-operations is corresponding to at least one flag variable in the variable set. The flag variables are used for recording execution progresses of the sub-operations. When each of the sub-operations is executed, the corresponding flag variable in the variable set is updated according to the execution progress of the sub-operation.
Abstract:
A receiver includes a CDR circuit, serial-to-parallel converter, and test module. The CDR circuit is for receiving the test signal groups inputted in series and following transmitting frequency of the test signal groups to obtain a clock signal, wherein the clock signal is used to provide an operational frequency of the receiver. The serial-to-parallel converter is for receiving the test signal groups outputted by the CDR circuit and converting the serially-inputted test signal groups into a plurality of test bytes outputted in parallel, wherein each of the test bytes has multi-bit of data. The test module is for receiving the test bytes and the clock signal and comparing two adjacent bytes of the test bytes to determine whether the two adjacent test bytes are completely the same.
Abstract:
A microprocessor includes a model specific register (MSR) having an address, fuses manufactured with a first predetermined value, and a control register. The microprocessor initially loads the first predetermined value from fuses into the control register. The microprocessor also receives a second predetermined value into the control register from system software of a computer system comprising the microprocessor subsequent to initially loading the first predetermined value into the control register. The microprocessor prohibits access to the MSR by an instruction that provides a first password generated by encrypting a function of the first predetermined value and the MSR address with a secret key manufactured into the first instance of the microprocessor and enables access to the MSR by an instruction that provides a second password generated by encrypting the function of the second predetermined value and the MSR address with the secret key.
Abstract:
A data transmission system and method are provided. The data transmission method receives a second format data packet sent by a host; decodes the second format data packet sent by the host, and translating the decoded second format data packet into a first format data packet; transmits the first format data packet to a first device; receives a transmission response sent by the first device in response to the first format data packet, determines whether to transmit the transmission response to the host, and performs a re-try flow when the transmission response does not need to be transmitted to the host. Preferably, a data transmission rate of the first device is slower than that of a second device, and the data transmission system is backward compatible to the first device, and the second format data packet is consistent with the second device.
Abstract:
A data storage device with a FLASH memory and an operating method for the data storage device are disclosed. According to the disclosure, the space of the FLASH memory is allocated to include groups of data blocks, a plurality of shared cache blocks (SCBs) and a plurality of dedicated cache blocks (DCBs). Each SCB is shared by one group of data blocks, for the write data storage when any data block of the group of data blocks is exhausted. The DCBs are allocated for the hot data storage. Each DCB corresponds to one hot logical block.
Abstract:
A microprocessor includes a translation lookaside buffer, a request to load a page table entry into the microprocessor generated in response to a miss of a virtual address in the translation lookaside buffer, and a prefetch unit. The prefetch unit receives a physical address of a first cache line that includes the requested page table entry and responsively generates a request to prefetch into the microprocessor a second cache line that is the next physically sequential cache line to the first cache line.
Abstract:
A circuit substrate includes a base layer, a first patterned conductive layer, a dielectric layer, a conductive block and a second patterned conductive layer. The first patterned conductive layer is disposed on the base layer and has a first pad. The dielectric layer is disposed on the base layer and covers the first patterned conductive layer, wherein the dielectric layer has an opening and the first pad is exposed by the opening. The conductive block is disposed in the opening and covers the first pad. The second patterned conductive layer is disposed on a surface of the dielectric layer and has a second pad, wherein the second pad and the conductive block are integrally formed.