Abstract:
In some examples, a memory device generates and exposes parity/difference information to a test system to reduce overall test time. The parity/difference information may be generated based on parity bits read from the memory device and parity bits produced from data bits stored in the memory device. In some cases, the parity/difference information may be compared to an expected parity/difference to determine a number of correctable errors which occurred during testing, while the data bits may be compared to expected data to determine a number of uncorrectable errors which occurred during testing.
Abstract:
In some examples, a memory device may be configured to read or write multiple bit cells as part of the same operation. In some cases, the tunnel junctions forming the bit cells may be arranged to utilize shared read/write circuitry. For instance, the tunnel junctions may be arranged such that both tunnel junctions may be written using the same write voltages. In some cases, the bit cells may be configured such that each bit cell is driven to the same state, while in other cases, select bit cells may be driven high, while others are driven low.
Abstract:
In some examples, a memory device is configured to load multiple pages of an internal page size into a cache in response to receiving an activate command and to write multiple pages of the internal page size into a memory array in response to receiving a precharge command. In some implementations, the memory array is arranged to store multiple pages of the internal page size in a single physical row.
Abstract:
Self-referenced reading of a memory cell in a memory includes first applying a read voltage across the memory cell to produce a sample voltage. After applying the read voltage, a write current is applied to the memory cell to write a first state to the memory cell. After applying the write current, the read voltage is reapplied across the memory cell. An offset current is also applied while the read voltage is reapplied, and the resulting evaluation voltage from reapplying the read voltage with the offset current is compared with the sample voltage to determine the state of the memory cell.
Abstract:
A boosted supply voltage generator is selectively activated and deactivated to allow operations that are sensitive to variations on the boosted voltage to be performed with a stable boosted voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner. Such techniques include storing state information corresponding to the voltage generator when deactivated, where the stored state information is used when reactivating the voltage generator. Stored state information can include a state of a clock signal provided to the voltage generator.
Abstract:
A word line supply voltage generator is selectively activated and deactivated to allow internal memory operations that are sensitive to variations on word line voltages to be performed with a stable word line voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner.
Abstract:
Circuitry and a method provide a plurality of timed control and bias voltages to sense amplifiers and write drivers of a spin-torque magnetoresistive random access memory array for improved power supply noise rejection, increased sensing speed with immunity for bank-to-bank noise coupling, and reduced leakage from off word line select devices in an active column.
Abstract:
In some examples, a memory device may be configured to utilize differential bit cells formed from two or more tunnel junctions. In some cases, the tunnel junctions forming the differential bit cell may be arranged to utilize shared read circuitry to reduce device mismatch. For instance, the read operations associated with both tunnel junction may be time multiplexed such that the same preamplifier circuitry may sense voltages representative of the tunnel junctions.
Abstract:
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on a state associated with one or more shorted bit cells. For instance, the memory device may be configured to identify a shorted bit cell within a memory array and to store the data in the memory array, such that a state of the data bit stored in the shorted bit cell matches the state associated with the shorted bit cell.
Abstract:
A cell bias control circuit maximizes the performance of devices in the read/write path of memory cells (magnetic tunnel junction device+transistor) without exceeding leakage current or reliability limits by automatically adjusting multiple control inputs of the read/write path at the memory array according to predefined profiles over supply voltage, temperature, and process corner variations by applying any specific reference parameter profiles to the memory array.