Abstract:
One illustrative method disclosed herein includes, among other things, forming a first conductive structure and a second conductive structure that is conductively coupled to the first conductive structure. In this example, forming the second conductive structure includes forming a ruthenium cap layer on and in contact with an upper surface of the first conductive structure, with the ruthenium cap layer in position, forming a liner layer comprising manganese on and in contact with at least the surfaces of the second layer of insulating material, wherein an upper surface of the ruthenium cap layer is substantially free of the liner layer, and forming a bulk ruthenium material on and in contact with the liner layer, wherein a bottom surface of the bulk ruthenium material contacts the upper surface of the ruthenium cap layer.
Abstract:
One method disclosed herein includes, among other things, performing a process operation on an exposed surface of a substrate so as to form an H-terminated silicon surface, selectively forming a sacrificial material layer within a replacement gate cavity but not on the H-terminated silicon surface, forming a high-k layer of insulating material within the replacement gate cavity above the H-terminated silicon surface and laterally between first spaced-apart portions of the sacrificial material layer, and forming a work-function adjusting material layer in the gate cavity, wherein the work-function adjusting material layer has a substantially planar upper surface that extends between second spaced-apart portions of the sacrificial material layer formed on the sidewall spacers.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a source/drain contact structure between two spaced-apart transistor gate structures, recessing the source/drain contact structure to define a source/drain contact etch cavity and depositing a conformal second layer of insulating material above a first layer of insulating material and in the source/drain contact etch cavity. The method also includes forming a third layer of insulating material above the conformal second layer of insulating material, forming an opening in the conformal second layer of insulating material and forming a V0 via that is conductively coupled to the exposed portion of the recessed source/drain contact structure.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in a layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective deposition process to selectively form a layer of conductive material in the opening and on the conductive contact, performing an anneal process, depositing at least one conductive material above the selectively formed conductive material layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials to thereby define a conductive via that is positioned in the opening and conductively coupled to the conductive contact.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in at least one layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective metal silicide formation process to selectively form a metal silicide layer in the opening and on the conductive contact, depositing at least one conductive material above the selectively formed metal silicide layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials and thereby define a conductive via that is positioned in the opening and conductively coupled to the selectively formed metal silicide layer and to the conductive contact.
Abstract:
Embodiments of the invention provide a semiconductor structure and a method of forming a semiconductor structure. Embodiments of the semiconductor structure have a plurality of fins on a substrate. The semiconductor has, and the method achieves, a silicide layer formed on and substantially surrounding at least one epitaxial region formed on a top portion of the plurality of fins. Embodiments of the present invention provide a method and structure for forming a conformal silicide layer on the epitaxial regions that are formed on the top portion of unmerged fins of a finFET.
Abstract:
One method disclosed herein includes forming at least one sacrificial sidewall spacer adjacent a sacrificial gate structure that is formed above a semiconducting substrate, removing at least a portion of the sacrificial gate structure to thereby define a gate cavity that is laterally defined by the sacrificial spacer, forming a replacement gate structure in the gate cavity, removing the sacrificial spacer to thereby define a spacer cavity adjacent the replacement gate structure, and forming a low-k spacer in the spacer cavity. A novel device disclosed herein includes a gate structure positioned above a semiconducting substrate, wherein the gate insulation layer has two upstanding portions that are substantially vertically oriented relative to an upper surface of the substrate. The device further includes a low-k sidewall spacer positioned adjacent each of the vertically oriented upstanding portions of the gate insulation layer.
Abstract:
Integrated circuits with copper and magnesium components and methods for producing such integrated circuits are provided. A method of producing the integrated circuits includes forming an aperture in an interlayer dielectric. A seed layer is formed in the aperture, where the seed layer includes manganese and copper, and where the seed layer has a copper concentration gradient. A core is formed overlying the seed layer, where the core includes copper.
Abstract:
A methodology for forming a self-aligned contact (SAC) that exhibits reduced likelihood of a contact-to-gate short circuit failure and the resulting device are disclosed. Embodiments may include forming a replacement metal gate, with spacers at opposite sides thereof, on a substrate, forming a recess in an upper surface of the spacers along outer edges of the replacement metal gate, and forming an aluminum nitride (AlN) cap over the metal gate and in the recess.
Abstract:
Approaches for forming a replacement metal gate (RMG) of a semiconductor device, are disclosed. Specifically provided is a p-channel field effect transistor (p-FET) and an n-channel field effect transistor (n-FET) formed over a substrate, the p-FET and the n-FET each having a recess formed therein, a high-k layer and a barrier layer formed within each recess, a work-function metal (WFM) selectively grown within the recess of the n-FET, wherein the high-k layer, barrier layer, and WFM are each recessed to a desired height within the recesses, and a metal material (e.g., Tungsten) formed within each recess. By providing a WFM chamfer earlier in the process, the risk of mask materials filling into each gate recess is reduced. Furthermore, the selective WFM growth improves fill-in of the metal material, which lowers gate resistance in the device.