摘要:
A display device comprises a substrate and a laminate structure formed on the substrate and comprising a plurality of layers including a display region. The laminate structure has a recessed/projected portions at least one of an outermost surface of display side and an interface between the layers. The projected portions of the recessed/projected portions have a mean circle-equivalent diameter ranging from 50 nm to 250 nm with the standard deviation of circle-equivalent diameter of the projected portions being within the range of 10 to 50% of the mean circle-equivalent diameter, and a mean height ranging from 100 nm to 500 nm with the standard deviation of height being within the range of 10 to 50% of the mean height. The projected portions have a circularity coefficient ranging from 0.6 to 1, and an area ratio ranging from 20 to 75%.
摘要:
The present invention provides a metal electrode transparent to light. The metal electrode comprises a transparent substrate and a metal electrode layer composed of a metal part and plural openings. The metal electrode layer continues without breaks, and 90% or more of the metal part continues linearly without breaks by the openings in a straight length of not more than ⅓ of the visible wavelength to use in 380 nm to 780 nm. The openings have an average diameter in the range of not less than 10 nm and not more than ⅓ of the wavelength of incident light, and the pitches between the centers of the openings are not less than the average diameter and not more than ½ of the wavelength of incident light. The metal electrode layer has a thickness in the range of not less than 10 nm and not more than 200 nm.
摘要:
The present invention provides a highly efficient light-extraction layer and an organic electroluminescence element excellent in light-extraction efficiency. The light-extraction layer of the present invention comprises a reflecting layer and a three-dimensional diffraction layer formed thereon. The diffraction layer comprises fine particles having a variation coefficient of the particle diameter of 10% or less and of a matrix having a refractive index different from that of the fine particles. The particles have a volume fraction of 50% or more based on the volume of the diffraction layer. The particles are arranged to form first areas having short-distance periodicity, and the first areas are disposed and adjacent to each other in random directions to form second areas. The organic electroluminescence element of the present invention comprises the above light-extraction layer.
摘要:
The present invention provides a metal electrode transparent to light. The metal electrode comprises a transparent substrate and a metal electrode layer composed of a metal part and plural openings. The metal electrode layer continues without breaks, and 90% or more of the metal part continues linearly without breaks by the openings in a straight length of not more than ⅓ of the visible wavelength to use in 380 nm to 780 nm. The openings have an average diameter in the range of not less than 10 nm and not more than ⅓ of the wavelength of incident light, and the pitches between the centers of the openings are not less than the average diameter and not more than ½ of the wavelength of incident light. The metal electrode layer has a thickness in the range of not less than 10 nm and not more than 200 nm.
摘要:
According to one embodiment, a method of forming a pattern includes forming a monolayer on a substrate, selectively exposing the monolayer to an energy beam and selectively modifying exposed portions thereof to form patterns of exposed and unexposed portions, forming a block copolymer layer includes first and second block chains on the monolayer, and causing the block copolymer layer to be phase-separated to form patterns of the first and second block chains of the block copolymer layer based on the patterns of the exposed and unexposed portions of the monolayer.
摘要:
According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a first stacked structure body, a first semiconductor layer, a first organic film, a first semiconductor-side insulating film, and a first electrode-side insulating film. The first stacked structure body includes a plurality of first electrode films stacked along a first direction and a first inter-electrode insulating film provided between the first electrode films. The first semiconductor layer is opposed to side faces of the first electrode films. The first organic film is provided between the side faces of the first electrode films and the first semiconductor layer and containing an organic compound. The first semiconductor-side insulating film is provided between the first organic film and the first semiconductor layer. The first electrode-side insulating film provided between the first organic film and the side faces of the first electrode films.
摘要:
A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a first electrode layer, a light emitting layer, a second semiconductor layer, a third semiconductor layer and a second electrode layer. The first electrode layer includes a metal portion having a plurality of opening portions. The opening portions penetrate the metal portion and have an equivalent circle diameter of a shape of the opening portions. The light emitting layer is between the first semiconductor layer and the first electrode layer. The second semiconductor layer of a second conductivity type is between the light emitting layer and the first electrode layer. The third semiconductor layer of a second conductivity type is between the second semiconductor layer and the first electrode layer. The second electrode layer is connected to the first semiconductor layer.
摘要:
A semiconductor light emitting device includes a structural body, a first electrode layer, an intermediate layer and a second electrode layer. The structural body includes a first semiconductor layer of first conductivity type, a second semiconductor layer of second conductivity type, and a light emitting layer between the first and second semiconductor layers. The first electrode layer is on a side of the second semiconductor layer opposite to the first semiconductor layer; the first electrode layer includes a metal portion and plural opening portions piercing the metal portion along a direction from the first semiconductor layer toward the second semiconductor layer, having an equivalent circular diameter not less than 10 nanometers and not more than 5 micrometers. The intermediate layer is between the first and second semiconductor layers in ohmic contact with the second semiconductor layer. The second electrode layer is electrically connected to the first semiconductor layer.
摘要:
The present invention provides a semiconductor light-emitting device capable of keeping high luminance intensity even if electric power increases, and hence the device is suitable for lighting instruments such as lights and lamps. This semiconductor device comprises a metal electrode layer provided with openings, and is so large in size that the electrode layer has, for example, an area of 1 mm2 or more. The openings have a mean diameter of 10 nm to 2 μm, and they penetrate through the metal electrode layer. That metal electrode layer can be produced by use of self-assembling of block copolymer or by nano-imprinting techniques.