Abstract:
A storage system is provided. The storage system includes a plurality of storage nodes, each of the plurality of storage nodes having a plurality of storage units with storage memory. The system includes a first network coupling the plurality of storage nodes and a second network coupled to at least a subset of the plurality of storage units of each of the plurality of storage nodes such that one of the plurality of storage units of a first one of the plurality of storage nodes can initiate or relay a command to one of the plurality of storage units of a second one of the plurality of storage nodes via the second network without the command passing through the first network.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes includes a first plurality of storage nodes configured to communicate together as a first storage cluster and a second plurality of storage nodes configured to communicate together as a second storage cluster. Each of the first and second pluralities of storage nodes has nonvolatile solid-state memory for user data storage and each of the first and second pluralities of storage nodes is configured to distribute user data and metadata associated with the user data throughout a respective plurality of storage nodes such that a respective storage cluster maintains ability to read the user data, using erasure coding, despite a loss of one or more of the respective plurality of storage nodes.
Abstract:
A plurality of storage nodes cooperating as a storage cluster is provided. Each of the plurality of storage nodes has storage memory. Each storage node of the plurality of storage nodes is configurable to direct erasure coded striping of data of one of an Mode or data segment across the plurality of storage nodes of the storage cluster, with at least one storage node of the plurality of storage nodes having a differing amount of storage capacity of the storage memory from an amount of storage capacity of another storage node in the plurality of storage nodes. A method of storing data in a storage cluster is also provided.
Abstract:
A system and method for maintaining the safety of volume operations. A storage controller receives a request to delete a first volume. In response to this request, the storage controller can delete a link between the first volume and its anchor medium. The storage controller can also delay the deletion of the first volume's anchor medium. Later on, if the user wishes to restore the first volume, the storage controller can reconnect the first volume to its previous anchor medium, effectively restoring the first volume to its former state and undoing the deletion operation.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes within a chassis. The plurality of storage nodes has flash memory for storage of user data and is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the storage nodes is configured to generate at least one address translation table that maps around defects in the flash memory on one of a per flash package basis, per flash die basis, per flash plane basis, per flash block basis, per flash page basis, or per physical address basis. Each of the plurality of storage nodes is configured to apply the at least one address translation table to write and read accesses of the user data.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
A method for adjustable error correction in a storage cluster is provided. The method includes determining health of a non-volatile memory of a non-volatile solid-state storage unit of each of a plurality of storage nodes in a storage cluster on a basis of per flash package, per flash die, per flash plane, per flash block, or per flash page. The determining is performed by the storage cluster. The plurality of storage nodes is housed within a chassis that couples the storage nodes as the storage cluster. The method includes adjusting erasure coding across the plurality of storage nodes based on the health of the non-volatile memory and distributing user data throughout the plurality of storage nodes through the erasure coding. The user data is accessible via the erasure coding from a remainder of the plurality of storage nodes if any of the plurality of storage nodes are unreachable.
Abstract:
A method of failure mapping is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes as a storage cluster. Each of the plurality of storage nodes has a non-volatile solid-state storage with flash memory or other types of non-volatile memory and the user data is accessible via the erasure coding from a remainder of the plurality of storage nodes in event of two of the plurality of storage nodes being unreachable. The method includes determining that a non-volatile memory block in the memory has a defect and generating a mask that indicates the non-volatile memory block and the defect. The method includes reading from the non-volatile memory block with application of the mask, wherein the reading and the application of the mask are performed by the non-volatile solid-state storage.
Abstract:
A system and method for maintaining a mapping table in a data storage subsystem. A data storage subsystem supports multiple mapping tables. Records within a mapping table are arranged in multiple levels which may be logically ordered by time. Each level stores pairs of a key value and a pointer value. New records are inserted in a created new (youngest) level. All levels other than the youngest may be read only. In response to detecting a flattening condition, a data storage controller is configured to identify a group of two or more adjacent levels of the plurality of levels for flattening which are logically adjacent in time. A new level is created and one or more records stored within the group are stored in the new level, in response to detecting each of the one or more records stores a unique key among keys stored within the group.
Abstract:
A method of operating a remote procedure call cache in a storage cluster is provided. The method includes receiving a remote procedure call at a first storage node having solid-state memory and writing information, relating to the remote procedure call, to a remote procedure call cache of the first storage node. The method includes mirroring the remote procedure call cache of the first storage node in a mirrored remote procedure call cache of a second storage node. A plurality of storage nodes and a storage cluster are also provided.