Abstract:
A flexible display device is manufactured with high yield. A display device having high resistance to repeated bending is provided. The display device is manufactured by forming a separation layer over a support substrate; forming, over the separation layer, an inorganic insulating layer including a first portion and a second portion; forming a display element over the inorganic insulating layer to be overlapped with the first portion; forming a connection electrode over the inorganic insulating layer to be overlapped with the second portion; sealing the display element; separating the support substrate and the inorganic insulating layer using the separation layer; attaching a substrate to the inorganic insulating layer to be overlapped with the first portion; and etching the second portion using the substrate as a mask to expose the connection electrode.
Abstract:
A display device that can switch between normal display and see-through display is provided. Visibility in see-through display is improved. A liquid crystal element overlaps with a light-emitting element. The light-emitting element, a transistor, and the like overlapping with the liquid crystal element transmit visible light. When the liquid crystal element blocks external light, an image is displayed with the light-emitting element. When the liquid crystal element transmits external light, an image displayed with the light-emitting element is superimposed on a transmission image through the liquid crystal element.
Abstract:
A light-emitting device can be folded in such a manner that a flexible light-emitting panel is supported by a plurality of housings which are provided spaced from each other and the light-emitting panel is bent so that surfaces of adjacent housings are in contact with each other. Furthermore, in the light-emitting device, in which part or the whole of the housings have magnetism, the two adjacent housings can be fixed to each other by a magnetic force when the light-emitting device is used in a folded state.
Abstract:
A manufacturing method of a semiconductor device including a step of forming a silicon layer over a formation substrate, a step of forming a resin layer over the silicon layer, a step of forming a transistor over the resin layer, a step of forming a conductive layer over the silicon layer and the resin layer, and a step of separating the formation substrate and the transistor. The resin layer has an opening over the silicon layer. The conductive layer is in contact with the silicon layer through the opening in the resin layer. In the step of separating the formation substrate and the transistor, the silicon layer is irradiated with light, so that silicon contained in the silicon layer reacts with a metal contained in the conductive layer, and a metal silicide layer is formed.
Abstract:
A lightweight flexible light-emitting device that is less likely to be broken is provided. The light-emitting device includes a first flexible substrate, a second flexible substrate, an element layer, a first bonding layer, and a second bonding layer. The element layer includes a light-emitting element. The element layer is provided between the first flexible substrate and the second flexible substrate. The first bonding layer is provided between the first flexible substrate and the element layer. The second bonding layer is provided between the second flexible substrate and the element layer. The first and second bonding layers are in contact with each other on the outer side of an end portion of the element layer. The first and second flexible substrates are in contact with each other on the outer side of the end portions of the element layer, the first bonding layer, and the second bonding layer.
Abstract:
To provide a display device with a manufacturing yield and/or a display device with suppressed mixture of colors between adjacent pixels. The display device includes a first pixel electrode, a second pixel electrode, a first insulating layer, a second insulating layer, and an adhesive layer. The first insulating layer includes a first opening. The second insulating layer includes a second opening. The first opening and the second opening are provided between the first pixel electrode and the second pixel electrode. In a top view, a periphery of the second opening is positioned on an inner side than a periphery of the first opening. The adhesive layer has a region overlapping with the second insulating layer below the second insulating layer.
Abstract:
To provide a novel display panel that is highly convenient or reliable. To provide a novel input and output device that is highly convenient or reliable. To provide a novel data processing device that is highly convenient or reliable. To provide a method for manufacturing a novel display panel that is highly convenient or reliable. The display panel includes a pixel, a third conductive film electrically connected to the pixel, an insulating film including an opening portion overlapping with the third conductive film, and an electrode including a first region in contact with the third conductive film and a second region functioning as a contact point.
Abstract:
A novel display device that is highly convenient with low power consumption is provided. The display device includes a display element including a liquid crystal layer, a display element including a light-emitting layer, a first transistor, and a second transistor. The first transistor is electrically connected to an electrode of the display element including the liquid crystal layer, and the second transistor is electrically connected to an electrode of the display element including the light-emitting layer. The electrode of the display element including the liquid crystal layer and the electrode of the display element including the light-emitting layer each include a reflective film and a conductive film. The reflective film of the display element including the liquid crystal layer has a region containing a metal contained in the reflective film of the display element including the light-emitting layer.
Abstract:
A method for manufacturing a display device, which does not easily damage an electrode, is provided. In the first step, a terminal electrode, a wiring, and a functional layer are provided over a first substrate; the terminal electrode, the wiring, and the functional layer are electrically connected to one another; an insulating layer is provided over the terminal electrode; a first layer is provided over the terminal electrode and the insulating layer; an adhesive layer is sandwiched between the first substrate and a second substrate; the second substrate and the adhesive layer include a first opening overlapping with part of the first layer; and the insulating layer includes a second opening inside the first opening in a top view. In the second step, part of the first layer is removed by emitting particles having a high sublimation property to the first layer, so that the terminal electrode is exposed.
Abstract:
A method for manufacturing a semiconductor device includes: forming a photocatalytic layer and an organic compound layer in contact with the photocatalytic layer over a substrate having a light transmitting property; forming an element forming layer over the substrate having the light transmitting property with the photocatalytic layer and the organic compound layer in contact with the photocatalytic layer interposed therebetween; and separating the element forming layer from the substrate having the light transmitting property after the photocatalytic layer is irradiated with light through the substrate having the light transmitting property.