Abstract:
A protective agent for an image bearing member of an image forming apparatus. The protective agent is applied onto a surface of the image bearing member and includes a hydrophobic organic compound (A), an inorganic fine particle (B), and an inorganic lubricant (C).
Abstract:
A method for treatment of bacterial infections with rifalazil administered once-weekly, or twice-weekly. A method for treatment of tuberculosis caused by Mycobacterium tuberculosis, infections caused by Mycobacterium avium complex, infections caused by Chlamydia pneumoniae and infections caused by Helicobacter pylori by administering to a patient suffering from the bacterial infection 1-100 mg of rifalazil once or twice a week. In this dose regimen, the treatment is fast, efficacious and eliminates undesirable secondary symptoms observed with daily doses of 1-50 mg of rifalazil.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A substrate is coated with an essentially water-free composition. The composition includes a superabsorbent polymer that absorbs from about 25 to greater than 100 times its weight in water and a material for lubricating the substrate. The superabsorbent polymer may be a polymer of acrylic acid, acrylamide or acrylate. Also included is a method for protecting a substrate from the effects of water or water migration.
Abstract:
A waterborne lubricant, useful in the plastic working of metals, which imparts a lubricating behavior to the surface of metals in the absence of a conversion coating contains (A) water-soluble inorganic salt and (B) wax, wherein these components are dissolved or dispersed in water and the (B)/(A) solids weight ratio is 0.3 to 1.5. The (C) metal salt of a fatty acid can also be present at a (C)/(A) solids weight ratio of 0.01 to 0.4. The water-soluble inorganic salt (A) can be selected from the sulfates, silicates, borates, molybdates, and tungstates. The wax (B) can be a synthetic wax having a melting point of 70 to 150° C. A lubricating coating is formed by application to give a post-drying add-on of 0.5 to 40 g/m2. A method for using said lubricant is also provided.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
The production of solid lubricant agglomerates by combining solid lubricant powder, an inorganic binder, other fillers if optionally desired, and a liquid to form a mixture, and driving off the liquid to form dry agglomerates which are subsequently classified by size or milled and classified by size to yield agglomerates of a desired size range. These agglomerates are then treated to stabilize the binder, thereby strengthening the binder and rendering it nondispersible in the liquid. The treated agglomerates are then blended or clad with a metal, metal alloy or a metallic composition, to produce a composition suitable for thermal spray applications.
Abstract:
The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid (nullRNAnull). Direct, non-competitive binding assays are advantageously used to screen libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
A waterborne lubricant, useful in the plastic working of metals, which imparts a lubricating behavior to the surface of metals in the absence of a conversion coating contains (A) water-soluble inorganic salt and (B) wax, wherein these components are dissolved or dispersed in water and the (B)/(A) solids weight ratio is 0.3 to 1.5. The (C) metal salt of a fatty acid can also be present at a (C)/(A) solids weight ratio of 0.01 to 0.4. The water-soluble inorganic salt (A) can be selected from the sulfates, silicates, borates, molybdates, and tungstates. The wax (B) can be a synthetic wax having a melting point of 70 to 150null C. A lubricating coating is formed by application to give a post-drying add-on of 0.5 to 40 g/m2. A method for using said lubricant is also provided.
Abstract translation:可用于金属塑性加工的水性润滑剂在不存在转化涂层的情况下赋予金属表面润滑性能包含(A)水溶性无机盐和(B)蜡,其中这些组分溶解或 分散在水中,(B)/(A)固体重量比为0.3〜1.5。 脂肪酸的(C)金属盐也可以(C)/(A)固体重量比为0.01至0.4存在。 水溶性无机盐(A)可以选自硫酸盐,硅酸盐,硼酸盐,钼酸盐和钨酸盐。 蜡(B)可以是熔点为70〜150℃的合成蜡。通过涂布形成润滑涂层,得到0.5〜40g / m 2的后干燥添加剂。 还提供了使用所述润滑剂的方法。