Abstract:
A station for dispensing liquid natural gas (LNG) and hydrogen to vehicles features a bulk tank which receives LNG from a tanker truck. LNG from the bulk tank may be directed to either an LNG conditioning and dispensing portion of the station or a hydrogen production and dispensing portion of the station. The latter includes a heat exchanger for warming the LNG and a steam reformer which produces hydrogen and carbon dioxide from the warmed LNG. The hydrogen is compressed and then either stored or dispensed to a vehicle powered by a fuel cell. The carbon dioxide may optionally be further processed and stored for future use.
Abstract:
Systems and methods for producing and storing pressurized liquefied natural gas (PLNG) are provided, wherein the systems and methods include (a) a natural gas processing plant suitable for producing PLNG; and (b) at least one container suitable for storing the PLNG, the at least one container comprising (i) a load-bearing vessel made from a composite material and (ii) a substantially non-load-bearing liner in contact with the vessel, said liner providing a substantially impermeable barrier to the PLNG. The systems and methods also preferably include (c) means for transporting the at least one container containing PLNG to an import terminal.
Abstract:
Large volumes of energy in the forms of gaseous fuels, such as, liquefied natural gas, compressed natural gas, compressed air, or liquid fuels, such as, propane, butane, are stored within an abandoned railroad, highway or aqueduct tunnel or similar such structure, in one or more pressure vessels or cylinders which have been permanently installed within the previously abandoned tunnel structure. The stored energy may be directly delivered at high rates to meet any nullpeaknull demand requirements, or may be delivered during times of normal demand based on market economics. The stored energy can also be utilized at the site to directly produce electricity for delivery to the end user.
Abstract:
An inexpensive, compact, on-site gas storage facility for the storage of natural gas uses steel pipes affixed end to end in a serpentine arrangement. The facility has a compressor, a decompressor or a pressure reducing regulator, a steel pipe storage system, and components for containing the gas in the system, controlling the delivery of gas to the system and expelling gas from the system for use or delivery of natural gas to end users. The facility includes monitors, filters or strainers, dryers, test stations and cathodic protection systems. The gas storage facility is usable in industrial, commercial, utility and residential applications.
Abstract:
Improved joints for cryogenic liquid-containing tanks are disclosed. The joints include a support plate, a lower arm mounted on the support plate, an upper arm mounted on the support plate spaced from the lower arm, and tank skins extending into the space between the lower and upper arms. Sealing layers are provided between the tank skins and the joint arms. The joints are particularly useful for space launch vehicle cryogenic liquid propellant tanks, which must be lightweight, withstand high structural loads and maintain leak-free conditions.
Abstract:
A system and method for assembling a fuel tank is disclosed. A measuring device is mounted on a carriage on which at least one machine tool (e.g., saw, router) is also mounted. This carriage is operatively interconnected with a computer and may be longitudinally moved between a headstock and tailstock which are longitudinally displaced and on which various subassemblies of the fuel tank may be mounted during the assembly of a given fuel tank. Length measurements are preferably made of each fuel tank subassembly prior to any machining operation being executed thereon, as well as after each such machining operation, by monitoring/knowing the longitudinal position of the carriage via the measuring device. These length measurements may be automatically recorded on an appropriate computer-readable storage medium in relation to the subject fuel tank subassembly and the subject fuel tank. This information may be used to evaluate supplier compliance with engineering specifications and/or performance of the system in assembling fuel tanks.
Abstract:
An installation for storing of natural gas or some other fluid comprises a lined underground storage space. Inside the rock wall of the storage space there is a concrete layer for supporting an inner impermeable lining layer. According to the invention, the concrete layer has a crack distribution control reinforcement layer closer to the impermeable lining layer than to the rock wall in order to divide large cracks into smaller cracks and distribute the cracks over a larger area of the impermeable lining layer. Further, also according to the invention, there is between the impermeable lining layer and the concrete layer a non-binding sliding layer to facilitate relative movements between the impermeable lining layer and the concrete layer.
Abstract:
A method is disclosed for loading pressurized liquefied natural gas (PLNG) into a plurality of containers containing pressurized vapor, wherein the containers are loaded in succession. The containers may be onshore or onboard a ship or other ocean transporting vessel. As a first step, the liquefied gas is introduced into the containers, thereby discharging the vapor therefrom. Vapor discharged from the containers is passed to auxiliary storage tanks comprising a first tank and a second tank. Vapor from at least one of the tanks is withdrawn and passed to a vapor utilization means such as a liquefaction plant for liquefaction of the vapor or to an engine or turbine for use of the vapor as fuel. Fluid flow to and from the first and second tanks is regulated to assure that the total flow rate of vapor to the vapor utilization means remains at a relatively constant flow rate.
Abstract:
Process components, containers, and pipes are provided that are constructed from ultra-high strength, low alloy steels containing less than 9 wt % nickel and having tensile strengths greater than 830 MPa (120 ksi) and DBTTs lower than about −73° C. (−100° F.).
Abstract:
A self-contained liquefied gas supply system has a tank for storing a liquefied gas, a primary pump for delivering the liquefied gas from the tank, a secondary pump for pressurizing the liquefied gas delivered from the primary pump, a vaporizer for vaporizing the liquefied gas discharged from the secondary pump into a vaporized gas, an expander for actuating the secondary pump with the vaporized gas produced by the vaporizer, and a back-pressure line connected to an outlet of the expander. A bypass pipe is connected between the primary pump and the vaporizer in bypassing relation to the secondary pump for supplying the liquefied gas from the primary pump to the vaporizer. A joint line is connected between the back-pressure line and a substantially atmospheric pressure line, the joint line having a first flow regulating valve for regulating a rate of flow of a gas from the back-pressure line to the substantially atmospheric pressure line. A bypass line is connected between the vaporizer and the back-pressure line in bypassing relation to the expander, the bypass line having a second flow regulating mechanism for regulating a rate of flow of the vaporized gas from the vaporizer to the back-pressure line. For starting the secondary pump, the liquefied gas is delivered from the primary pump through the bypass pipe to the vaporizer, which produces a vaporized gas supplied to the expander.