Abstract:
Pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput or process a desired type of biomass, are disclosed. According to representative methods, the use of a quench medium (e.g., water), either as a primary or a secondary type of heat removal, allows greater control of process temperatures, particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Quench medium may be distributed to one or more locations within the reheater vessel, such as above and/or within a dense phase bed of fluidized particles of a solid heat carrier (e.g., sand) to better control heat removal.
Abstract:
Pyrolysis methods and apparatuses that allow effective heat removal, for example when necessary to achieve a desired throughput or process a desired type of biomass, are disclosed. According to representative methods, the use of a quench medium (e.g., water), either as a primary or a secondary type of heat removal, allows greater control of process temperatures, particularly in the reheater where char, as a solid byproduct of pyrolysis, is combusted. Quench medium may be distributed to one or more locations within the reheater vessel, such as above and/or within a dense phase bed of fluidized particles of a solid heat carrier (e.g., sand) to better control heat removal.
Abstract:
A fluidized-bed gasification method using fluidized-bed combustion furnace; a separator for separation into bed material and an exhaust gas; a fluidized-bed gasification furnace into which the bed material is introduced through a downcomer and into which raw material is introduced; a circulation passage for circulating char and the bed material to the combustion furnace; a dispersion section; extending along a width of a bed-material-introduction-side wall of the gasification furnace to receive the bed material from the downcomer; a fluidizing-gas introduction system for blowing fluidizing gas into the dispersion section to fluidize the bed material in the dispersion section; and a supply section for supplying the bed material in the dispersion section to the fluidized-bed gasification furnace substantially evenly throughout the width on the bed-material-introduction side, is provided.
Abstract:
Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reheater for containing a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater to receive a first portion of the heated inorganic particles. The inorganic particle cooler is configured to receive a cooling medium for indirect heat exchange with the first portion of the heated inorganic particles to form first partially-cooled heated inorganic particles that are fluidly communicated to the reheater and combined with a second portion of the heated inorganic particles to form second partially-cooled heated inorganic particles. A reactor is in fluid communication with the reheater to receive the second partially-cooled heated inorganic particles.
Abstract:
In a method of processing paint sludge, measured portions of the sludge are supplied into a heating chamber for pyrolysis at about 1500° F. to disintegrate into organic and inorganic portions, the organic portion in the form of syngas is then drawn out, cooled, and pressurized to be used in kilns or combustion chambers, whereas the inorganic portion in the form of ash is directed to a calciner, where it is heated at about 1500° F. in a controlled presence of oxygen and cooled to have it ready for the reuse in paint manufacturing.
Abstract:
The present invention relates to a pyrolysis device using a liquid metal including: a hollow reactor in which the liquid metal is received; a circulating pump connected to the reactor; a buffer tank disposed on an upper portion of the reactor and receiving the liquid metal from the circulating pump; a nozzle coupled with the buffer tank and jetting the liquid metal within the buffer tank into the reactor; and an air supply source supplying air to the liquid metal within the reactor, wherein char generated from fuel injected into the reactor is combusted by reacting with air introduced into a lower portion of the reactor through the air supply source, and liquid metal sprays jetted from the nozzle react with gases generated in the reactor to purify the gases.
Abstract:
An apparatus including at least one seal pot having at least one penetration through a surface other than the top of the seal pot, each of the at least one penetrations being configured for introduction, into the at least one seal pot, of solids from a separator upstream of the at least one seal pot; a substantially non-circular cross section; or both at least one penetration through a surface other than the top of the seal pot and a substantially non-circular cross section.
Abstract:
This gasification melting facility includes: a fluidized bed gasification furnace that generates pyrolysis gas by thermally decomposing waste and discharges incombustibles; a vertical cyclone melting furnace that includes a pyrolysis gas duct through which the pyrolysis gas is introduced; a pyrolysis gas passage that connects the fluidized bed gasification furnace with the pyrolysis gas duct of the vertical cyclone melting furnace; pulverizer that pulverize the incombustibles into pulverized incombustibles so that the particle size of the incombustibles becomes fine; and airflow transporter that puts the pulverized incombustibles in the pyrolysis gas passage, and separating metal contained in the pulverized incombustibles by a difference in specific gravity while conveying the pulverized incombustibles together with airflow. The pyrolysis gas and the pulverized incombustibles are melted in the vertical cyclone melting furnace.
Abstract:
Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reheater for containing a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater to receive a first portion of the heated inorganic particles. The inorganic particle cooler is configured to receive a cooling medium for indirect heat exchange with the first portion of the heated inorganic particles to form first partially-cooled heated inorganic particles that are fluidly communicated to the reheater and combined with a second portion of the heated inorganic particles to form second partially-cooled heated inorganic particles. A reactor is in fluid communication with the reheater to receive the second partially-cooled heated inorganic particles.
Abstract:
A gasifier for disposing of biomass and other waste materials through a gasification and combustion process. The gasifier includes a primary chamber for receiving and holding biomass or a selected waste product. A heat transfer chamber is disposed adjacent the primary chamber. A burner is associated with the gasifier for generating heat and heating the gasifier during various phases or portions of the gasification and combustion process. In the gasification process, the heat transfer chamber is heated and the heat is transferred to the primary chamber where the biomass is heated. During the gasification process, biomass material is volatized generating fumes and gases that later react and release heat through exothermic reactions. Once the gasification process has been concluded, the process enters a combustion phase where the biomass is actually burned. During the gasification-combustion phases, the amount of heat supplied by the burner will vary. Generally the amount of energy or heat supplied by the burner will decrease throughout the process because the biomass itself will supply substantial amounts of heat through exothermic reactions.