Abstract:
A field emission cathode is provided which includes a substrate and a conductive layer disposed adjacent the substrate. An electrically resistive pillar is disposed adjacent the conductive layer, the resistive pillar having a substantially flat surface spaced from and substantially parallel to the substrate. A layer of diamond is disposed adjacent the surface of the resistive pillar.
Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.
Abstract:
A chemical mechanical polishing process for the formation of self-aligned gate structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a conformal insulating material, iii) deposited with a flowable insulating material, which is reflowed below the level of the tip, iv) optionally deposited with another insulating material, v) deposited with a conductive material layer, and vi) optionally, deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose the conformal insulating layer, viii) wet etched to remove the insulating material and thereby expose the emission tip, afterwhich ix) the emitter tip may be coated with a material having a lower work function than silicon.
Abstract:
A field emission device and method for manufacturing which comprises using a diffusion mask to preserve an area of a silicon substrate for use as a cathode while all around the cathode the substrate is being diffused with oxygen to form an insulating layer. And further comprising depositing a molybdenum gate electrode layer on the insulating layer and etching the molybdenum gate electrode layer such that the diffusion mask falls off and the insulating layer is dissolved around the cathode through the hole formed in the gate electrode layer by the diffusion mask being removed. The gate electrode openings are therefore automatically and independently self-aligned with their respective cathodes.
Abstract:
A chemical mechanical polishing process for the formation of self-aligned gate structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a conformal insulating material, iii) deposited with a flowable insulating material, which is reflowed below the level of the tip, iv) optionally deposited with another insulating material, v) deposited with a conductive material layer, and vi) optionally, deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose the conformal insulating layer, viii) wet etched to remove the insulating material and thereby expose the emission tip, afterwhich ix) the emitter tip may be coated with a material having a lower work function than silicon.