Abstract:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
Abstract:
This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor or DRAM cell. In such a device, a high-K zirconia-based layer may be used as the primary dielectric together with a relatively inexpensive metal electrode based on titanium nitride. To prevent corruption of the electrode during device formation, a thin barrier layer can be used seal the electrode prior to the use of a high temperature process and a (high-concentration or dosage) ozone reagent (i.e., to create a high-K zirconia-based layer). In some embodiments, the barrier layer can also be zirconia-based, for example, a thin layer of doped or un-doped amorphous zirconia. Fabrication of a device in this manner facilitates formation of a device with dielectric constant of greater than 40 based on zirconia and titanium nitride, and generally helps produce less costly, increasingly dense DRAM cells and other semiconductor structures.
Abstract:
Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
Abstract:
A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments.
Abstract:
Methods for producing RRAM resistive switching elements having optimal switching behavior include crystalline phase structural changes. Structural changes indicative of optimal switching behavior include hafnium oxide phases in an interfacial region between a resistive switching layer and an electrode.
Abstract:
Embodiments of the current invention describe a substrate processing tool. The substrate processing tool includes a housing defining a chamber, a substrate support, a container, and an impelling mechanism. The substrate support is coupled to the housing and configured to support a substrate within the chamber. The container is coupled to the housing within the chamber and configured to hold a liquid. The container is below and spaced apart from the substrate. The impelling mechanism is coupled to the housing and configured to apply a force to the liquid within the container such that an impelled portion of the liquid contacts a lower surface of the substrate.
Abstract:
A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. A second electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the second electrode layer contains a conductive base layer and conductive metal oxide layer. In some embodiments, both the first electrode layer and the second electrode layer contain a conductive base layer and conductive metal oxide layer.
Abstract:
Methods for forming an electronic device having a fluorine-stabilized semiconductor substrate surface are disclosed. In an exemplary embodiment, a layer of a high-κ dielectric material is formed together with a layer containing fluorine on a semiconductor substrate. Subsequent annealing causes the fluorine to migrate to the surface of the semiconductor (for example, silicon, germanium, or silicon-germanium). A thin interlayer of a semiconductor oxide may also be present at the semiconductor surface. The fluorine-containing layer can comprise F-containing WSix formed by ALD from WF6 and SiH4 precursor gases. A precise amount of F can be provided, sufficient to bind to substantially all of the dangling semiconductor atoms at the surface of the semiconductor substrate and sufficient to displace substantially all of the hydrogen atoms present at the surface of the semiconductor substrate.
Abstract:
Molybdenum oxide can be used to form switching elements in a resistive memory device. The atomic ratio of oxygen to molybdenum can be between 2 and 3. The molybdenum oxide exists in various Magneli phases, such as Mo13O33, Mo4O11, Mo17O47, Mo8O23, or Mo9O26. An electric field can be established across the switching layers, for example, by applying a set or reset voltage. The electric field can cause movement of the oxygen charges, e.g., O2− ions, changing the composition profile of the switching layers, forming bistable states, including a high resistance state with MoO3 and a low resistance state with MoOx (x
Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor layer inserted between the dielectric layer and at least one of the two electrode layers. In some embodiments, the dielectric layer may be doped with an oxygen donor dopant. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.