Abstract:
A processing device receives an intraoral image of a first intraoral site and determines an identity of the first intraoral site. The processing device then locks the intraoral image and selects a portion of the intraoral image depicting a portion of the first intraoral site based at least in part on the identity of the first intraoral site. The processing device may then generate a model comprising the first intraoral site based at least in part on the locked intraoral image, wherein the portion of the locked intraoral image is used for a first region of the model, and wherein data from one or more additional intraoral images that also depict the portion of the first intraoral site is not used for the first region of the model.
Abstract:
A method and system are provided for manufacturing a physical dental model. A virtual model is provided representative of at least a portion of the intra-oral cavity including at least one dental implant implanted therein, and the virtual model includes a virtual portion representative of each dental implant. The virtual spatial disposition of each such virtual portion is determined with respect to the virtual model, corresponding to a real spatial disposition of the respective implant with respect to the intra oral cavity. A physical model is then manufactured based on the virtual model, the physical model including a physical analog corresponding to each implant at a respective physical spatial disposition with respect to the physical model corresponding to the respective virtual spatial disposition of the respective virtual portion with respect to the first virtual model as already determined. In some embodiments, a jig is provided configured for maintaining a desired physical spatial disposition between the physical analog and a cavity of the physical dental model at least until the physical analog is affixed in the cavity.
Abstract:
A 3D virtual model of an intra oral cavity in which at least a part of a finish line of a preparation is obscured is manipulated in virtual space by means of a computer or the like to create, recreate or reconstruct finish line data and other geometrical corresponding to the obscured part. Trimmed virtual models, and trimmed physical models, can then be created utilizing data thus created. The virtual models and/or the physical models may be used in the design and manufacture of copings or of prostheses.
Abstract:
A 3D virtual model of an intra oral cavity in which at least a part of a finish line of a preparation is obscured is manipulated in virtual space by means of a computer or the like to create, recreate or reconstruct finish line data and other geometrical corresponding to the obscured part. Trimmed virtual models, and trimmed physical models, can then be created utilizing data thus created. The virtual models and/or the physical models may be used in the design and manufacture of copings or of prostheses.
Abstract:
An intraoral scanner includes a probe housing disposed at a distal end of an elongate wand. The probe housing forms an interior volume. The intraoral scanner further includes a distributed projector disposed in the interior volume. The distributed projector includes a diode module including a laser diode configured to emit a beam of light. The distributed projector further includes a lens module including a first pattern generating optical element configured to generate structured light based on at least a first portion of the beam of light. The lens module is disposed at least a threshold distance from the diode module.
Abstract:
A method may include generating a first virtual model of a dental structure of a patient from three-dimensional scan data, identifying a first virtual surface of the first virtual model corresponding to a first portion of the soft dental surfaces that surrounds a location of the restorative object, separating the identified first virtual surface of the soft dental surfaces from at least the portion associated with hard dental surfaces to create a second virtual model of a soft model part and a third virtual model of a hard model part, and outputting a composite model including a first model part of a soft material and a second model part of a hard material, the first model part corresponding to a shape of the second virtual model and the second model part corresponding to a shape of the third virtual model.
Abstract:
Palatal expander systems and methods. A palatal expander includes a palatal region connecting tooth engagement regions, where the palatal region is configured to apply a lateral force across a patient's palate when the tooth engagement regions are worn over the patient's teeth. Attachment regions on buccal sides of the tooth engagement regions are shaped and sized to engage with dental attachments bonded to the patient's teeth. At least one breach region corresponding to a thinned region of the palatal expander extends anteriorly to posteriorly in the palatal region or an occlusal portion of one or both of the tooth engagement regions. The at least one breach region is configured to breach or bend when a pulling force is applied to one or both of the tooth engagement regions such that one or both of the attachment regions are detached from respective attachments.
Abstract:
An intraoral scanner generates 2D images of a dental site and 3D intraoral scans of the dental site. The computing device receives the 2D images of the dental site and the 3D intraoral scans of the dental site from the intraoral scanner, generates a 3D model of the dental site based on the 3D intraoral scans of the dental site, and processes at least one of a) one or more of the 2D images of the dental site, b) one or more of the 3D intraoral scans of the dental site, or c) data from the 3D model of the dental site to identify one or more intraoral areas of interest (AOIs) at the dental site. The computing device determines a dental condition associated with the one or more intraoral AOIs, and determines a manner for scanning the one or more intraoral AOIs.
Abstract:
A system comprises an image capture device, an augmented reality (AR) display to display, and a processing device. The processing deice receives image data of a dental arch from the image capture device and processes the image data using a plurality of detection rules, where each detection rule detects one or more dental conditions. The processing device determines a dental condition for the dental arch based on the processing, determines a position of an area of interest on the dental arch, wherein the area of interest is associated with the dental condition, generates a visual overlay comprising an indication of the dental condition at the position of the area of interest, and outputs the visual overlay to the AR display, wherein the visual overlay is superimposed over a view of the dental arch on the AR display at the position of the area of interest.