摘要:
Image sensor devices and methods for fabricating the same are provided. An exemplary embodiment of an image sensor device comprises a support substrate. A passivation structure is formed over the support substrate. An interconnect structure is formed over the passivation structure. A first semiconductor layer is formed over the interconnect structure, having a first and second surfaces, wherein the first and second surfaces are opposing surfaces. At least one light-sensing device is formed over/in the first semiconductor layer from a first surface thereof. A color filter layer is formed over the first semiconductor layer from a second surface thereof. At least one micro lens is formed over the color filter layer.
摘要:
An improved magnetoresistive memory device has a reduced distance between the magnetic memory element and a conductive memory line used for writing to the magnetic memory element. The reduced distance is facilitated by forming the improved magnetoresistive memory device according to a method that includes forming a mask over the magnetoresistive memory element and forming an insulating layer over the mask layer, then removing portions of the insulating layer using a planarization process. A conductive via can then be formed in the mask layer, for example using a damascene process. The conductive memory line can then be formed over the mask layer and conductive via.
摘要:
An image sensor device includes a semiconductor substrate and a plurality of pixels on the substrate. An etch-stop layer is formed over the pixels and has a thickness less than about 600 Angstroms. The image sensor device further includes an interlayer dielectric (ILD) overlying the etch stop layer. The etch-stop layer has a refractive index less than about 2 and an extinction coefficient less than about 0.1.
摘要:
An EEPROM flash memory device having a floating gate electrode enabling a reduced erase voltage and method for forming the same, the floating gate electrode including an outer edge portion comprising multiple charge transfer pointed tips.
摘要:
A method is provided for fabrication of a semiconductor substrate having regions isolated from each other by shallow trench isolation (STI) structures protruding above a surface of the substrate by a step height. The method includes the steps of forming a bottom antireflective coating (BARC) layer overlying the surface of a semiconductor substrate and the surface of STI structures; etching back a portion of the BARC layer overlying at least one of the STI structures, and partially etching back the at least one of the STI structures, to reduce the step height by which the STI structure protrudes above the surface of the substrate; and removing a remaining portion of the BARC layer between adjacent STI structures. The method may be used to fabricate semiconductor devices including memory cells that have improved reliability.
摘要:
An image sensor includes a double-microlens structure with an outer microlens aligned over an inner microlens, both microlenses aligned over a corresponding photosensor. The inner or outer microlens may be formed by a silylation process in which a reactive portion of a photoresist material reacts with a silicon-containing agent. The inner or outer microlens may be formed by step etching of a dielectric material, the step etching process including a series of alternating etch steps including an anisotropic etching step and an etching step that causes patterned photoresist to laterally recede. Subsequent isotropic etching processes may be used to smooth the etched step structure and form a smooth lens. A thermally stable and photosensitive polymeric/organic material may also be used to form permanent inner or outer lenses. The photosensitive material is coated then patterned using photolithography, reflowed, then cured to form a permanent lens structure.
摘要:
A split gate FET wordline electrode structure and method for forming the same including an improved polysilicon etching process including providing a semiconductor wafer process surface comprising first exposed polysilicon portions and adjacent oxide portions; forming a first oxide layer on the exposed polysilicon portions; blanket depositing a polysilicon layer on the first exposed polysilicon portions and adjacent oxide portions; forming a hardmask layer on the polysilicon layer; carrying out a multi-step reactive ion etching (RIE) process to etch through the hardmask layer and etch through a thickness portion of the polysilicon layer to form second polysilicon portions adjacent the oxide portions having upward protruding outer polysilicon fence portions; contacting the semiconductor wafer process surface with an aqueous HF solution; and, carrying out a downstream plasma etching process to remove polysilicon fence portions.
摘要:
A method of fabricating word-line spacers comprising the following steps. A substrate having an inchoate split-gate flash memory structure formed thereover is provided. A conductive layer is formed over the substrate and the inchoate split-gate flash memory structure. The conductive layer having: a upper portion and lower vertical portions over the inchoate split-gate flash memory structure; and lower horizontal portions over the substrate. A dual-thickness oxide layer is formed over the conductive layer and has a greater thickness over the upper portion of the conductive layer. The oxide layer is partially etched back to remove at least the oxide layer from over the lower horizontal portions of the conductive layer to expose the underlying portions of the conductive layer. Then etching: away the exposed portions of the conductive layer over the substrate; and through at least a portion of the thinned oxide layer and into the exposed underlying portion of the conductive layer to expose a portion of the inchoate split-gate flash memory structure and to form the word-line spacers adjacent the inchoate split-gate flash memory structure.
摘要:
A method for forming a silicon dioxide layer over a silicon substrate including providing a substrate having exposed silicon portions; and, forming a silicon dioxide layer over the exposed silicon portions according to an oxide formation process including contacting the exposed silicon portions with an oxidizing solution comprising water and ozone.
摘要:
The invention provides a method for etching silicon nitride selective to titanium silicide and fabricating multi-level contact openings on a quartermicron device using a two step etch process. The process begins by providing a substrate having thereover a silicon nitride hard mask at one level and a titanium silicide layer at another level wherein the silicon nitride hard mask and the titanium silicide region have an oxide layer thereover. In a first etch step, the oxide layer is patterned to form a first contact opening and a second contact opening. The first contact opening stops on the silicon nitride hard mask and the second contact opening stops on the titanium silicide region. In a second etch step the silicon nitride hard mask is etched through in the first contact opening using an etch selective to titanium silicide. The etch comprises CH2F2 and O2 at a ratio of CH2F2 to O2 of between about 2 and 4.
摘要翻译:本发明提供了一种用于蚀刻对硅化钛有选择性的氮化硅并且使用两步蚀刻工艺在四分之一器件上制造多层接触开口的方法。 该工艺首先提供一层具有氮化硅硬掩模和另一层的硅化钛层的衬底,其中氮化硅硬掩模和硅化钛区域之间具有氧化物层。 在第一蚀刻步骤中,图案化氧化物层以形成第一接触开口和第二接触开口。 第一接触开口在氮化硅硬掩模上停止,并且第二接触开口在硅化钛区域上停止。 在第二蚀刻步骤中,使用对硅化钛的选择性蚀刻,在第一接触开口中蚀刻氮化硅硬掩模。 蚀刻包括CH 2 F 2和O 2,CH 2 F 2与O 2的比例在约2和4之间。