Abstract:
The decontamination gel consists of one solution including: a) a thickening agent; b) an active agent of decontamination; in which the thickening agent (a), is an agent exclusively organic, chosen among water-soluble organic polymers. This gel is usable for radioactive decontamination of surfaces, especially metallic surfaces.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilane or organosiloxane compound and an oxidizing gas at a low RF power level from 10-250 W. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O, at an RF power level from about 10 to 200 W or a pulsed RF power level from about 20 to 250 W during 10-30% of the duty cycle.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10W to about 200W or a pulsed RF power level from about 20W to about 500W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, dimethylsilane, (CH3)2SiH2, or 1,1,3,3-tetramethyl-disiloxane, (CH3)2—SiH—O—SiH—(CH3)2, and nitrous oxide, N2O, at a constant RF power level from about 10W to about 150W, or a pulsed RF power level from about 20W to about 250W during 10% to 30% of the duty cycle.
Abstract:
An apparatus for converting PFC gases exhausted from semiconductor processing equipment to less harmful, non-PFC gases. One embodiment of the apparatus includes a silicon filter and a plasma generation system. The plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with silicon and/or oxygen in the filter and convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts. Another embodiment includes a plasma generation system and a particle trapping and collection system. The particle trapping and collection system traps silicon containing residue from deposition processes that produces such residue, and the plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with the collected residue to convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH3SiH3, and N2O.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, dimethylsilane, (CH3)2SiH2, or 1,1,3,3-tetramethyl-disiloxane, (CH3)2—SiH—O—SiH—(CH3)2, and nitrous oxide, N2O, at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O, at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.
Abstract:
This invention provides a stable process for depositing films which include silicon and nitrogen, such as antireflective coatings of silicon oxynitride. Nitrogen is employed to permit lower flow rates of the process gas containing silicon, thereby reducing the deposition rate and providing better control of film thickness. Additionally, the use of nitrogen stabilizes the process, improving film uniformity, and provides a higher-quality film. The invention is capable of providing more accurate and easier fabrication of structures requiring uniformly thin films containing silicon, nitrogen, and, optionally, oxygen, such as antireflective coatings.
Abstract:
The present invention provides a method and apparatus for delivering one or more process gases and one or more cleaning gases into one or more processing regions. The gas distribution system includes a gas inlet and a gas conduit, each disposed to deliver one or more gases into the chamber via a desired diffusing passage. Also, a gas delivery method and apparatus for splitting a gas feed into multiple feed lines is provided having a gas filter disposed upstream from a splitting coupling disposed in the line.