摘要:
An organic electroluminescent device is provided, which includes an emission portion comprising a first electrode and a second electrode and an organic layer sandwiched between the first and second electrodes, and a diffraction grating disposed neighboring on the emission portion, the diffraction grating having first regions and a second region, the first regions comprising a plurality of pair of recessed and projected portions, the plurality of pair of recessed and projected portions being periodically arranged and provided with a primitive translation vector of a direction, the second region comprising an aggregate of the first regions and located parallel with an emission surface of the organic electroluminescent device.
摘要:
The present invention provides such a formation method that an antireflection structure having excellent antireflection functions can be formed in a large area and at small cost. Further, the present invention also provides an antireflection structure formed by that method. In the formation method, a base layer and particles placed thereon are subjected to an etching process. The particles on the base layer serve as an etching mask in the process, and hence they are more durable against etching than the base layer. The etching rate ratio of the base layer to the particles is more than 1 but not more than 5. The etching process is stopped before the particles disappear. It is also possible to produce an antireflection structure by nanoimprinting method employing a stamper. The stamper is formed by use of a master plate produced according to the above formation method.
摘要:
The present invention provides a metal electrode transparent to light. The metal electrode comprises a transparent substrate and a metal electrode layer composed of a metal part and plural openings. The metal electrode layer continues without breaks, and 90% or more of the metal part continues linearly without breaks by the openings in a straight length of not more than ⅓ of the visible wavelength to use in 380 nm to 780 nm. The openings have an average diameter in the range of not less than 10 nm and not more than ⅓ of the wavelength of incident light, and the pitches between the centers of the openings are not less than the average diameter and not more than ½ of the wavelength of incident light. The metal electrode layer has a thickness in the range of not less than 10 nm and not more than 200 nm.
摘要:
A polarizing element is disclosed which includes a smooth glass substrate and a polarization layer formed thereon, the polarization layer having polarization characteristics for the incident light. The polarization layer is made of a carbon-based substance including carbon atoms. The carbon atoms are continuously connected via carbon-carbon double bonds having [pi] electron clouds. The [pi] electron clouds have average continuous distance of 100 nm or more in a longitudinal direction and have an average continuous distance less than 50 nm in a transverse direction. The carbon-based substance is formed in such a way that a plurality of the [pi] electron clouds have longitudinal directions which are in parallel along the glass-substrate surface.
摘要:
A nanometer size roughened structure is formed on a surface of a light-emitting element, and luminous efficiency is improved.The roughened structure on the surface of the light-emitting element of the invention is formed into the following shape such that the refractive index smoothly changes: (1) the mean diameter of projections on the roughened surface is smaller than the light wavelength; (2) a pitch of the roughened surface is irregular; and (3) positions of the top and bottom of the roughened surface are distributed from their mean values within the light wavelength in order to give a smooth gradient of the refractive index. The surface of such light-emitting element is obtained by forming a thin film on the surface of the light-emitting element using a resin composition which contains a block copolymer or graft copolymer and forms a micophase-separated structure in a self-organization manner; selectively removing at least one phase of the microphase-separated structure of the thin film formed on the surface; and etching the surface of the light-emitting element using the remaining phase as an etching mask.
摘要:
A circuit breaker has a molded case with a main case, a middle cover and a top cover being dividable from one another. The main case contains contactor sections, each including a stationary contactor and a movable contactor for a pole corresponding to each phase in a polyphase circuit, an arc-extinguishing device, an overcurrent tripping device actuating a tripping mechanism by detecting an overcurrent, and a zero-phase current transformer detecting a leak current. The middle cover has a partitioned recess for containing a switching mechanism and the tripping mechanism. Interpole partitions, surrounding the contactor section and the arc-extinguishing device, and a screen-like intermediate partition, isolating the contactor sections from the overcurrent tripping device, are formed with the middle cover laid on the main case. A wall with gas outlets for an arc gas is provided on the back of the arc-extinguishing devices.
摘要:
In an organic EL display provided with a transparent substrate, a buffer layer provided on the transparent substrate, and an organic EL element provided on the buffer layer, the buffer layer is formed of a material having the same refractive index as the transparent electrode of the EL element, and has a two-dimensional diffraction grating having two grating periods.
摘要:
A nanometer size roughened structure is formed on a surface of a light-emitting element, and luminous efficiency is improved. The roughened structure on the surface of the light-emitting element of the invention is formed into the following shape such that the refractive index smoothly changes: (1) the mean diameter of projections on the roughened surface is smaller than the light wavelength; (2) a pitch of the roughened surface is irregular; and (3) positions of the top and bottom of the roughened surface are distributed from their mean values within the light wavelength in order to give a smooth gradient of the refractive index. The surface of such light-emitting element is obtained by forming a thin film on the surface of the light-emitting element using a resin composition which contains a block copolymer or graft copolymer and forms a micophase-separated structure in a self-organization manner; selectively removing at least one phase of the microphase-separated structure of the thin film formed on the surface; and etching the surface of the light-emitting element using the remaining phase as an etching mask.
摘要:
According to the present invention, a resist resin having in its structure a specific bridged-bond-containing aliphatic ring, and a resist composition comprising the same are provided. By using this resist composition, a resist pattern excellent in both transparency against short-wavelength light and dry-etching resistance can be formed by alkali development with high resolution.
摘要:
The present invention provides a composite material such as a passive element, a passive element composite component, a substrate with a built-in passive element and a composite wiring substrate which are free from, for example, a layer peeling problem and enables high density packaging with ease. In the present invention, a porous base material is divided into plural functional regions and a material having different electromagnetic characteristics is filled in a pore of the porous base material of each functional region, to form a passive element or a wiring substrate. Among the aforementioned plural functional regions, at least one functional region is a conductive material region filled with a conductive material and other regions are filled with a high-dielectric material, a high-permeability material or a low-dielectric material. This structure ensures that a single passive element, plural passive elements or a wiring substrate provided with a circuit wiring can be formed on a porous base material efficiently.