Abstract:
An array of nonvolatile memory cells includes a plurality of vertically stacked tiers of nonvolatile memory cells. The tiers individually include a first plurality of horizontally oriented first electrode lines and a second plurality of horizontally oriented second electrode lines crossing relative to the first electrode lines. Individual of the memory cells include a crossing one of the first electrode lines and one of the second electrode lines and material there-between. Specifically, programmable material, a select device in series with the programmable material, and current conductive material in series between and with the programmable material and the select device are provided in series with such crossing ones of the first and second electrode lines. The material and devices may be oriented for predominant current flow in defined horizontal and vertical directions. Method and other implementations and aspects are disclosed.
Abstract:
Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
Abstract:
Some embodiments include memory cells which have multiple programmable material structures between a pair of electrodes. One of the programmable material structures has a first edge, and another of the programmable material structures has a second edge that contacts the first edge. Some embodiments include methods of forming an array of memory cells. First programmable material segments are formed over bottom electrodes. The first programmable material segments extend along a first axis. Lines of second programmable material are formed over the first programmable material segments, and are formed to extend along a second axis that intersects the first axis. The second programmable material lines have lower surfaces that contact upper surfaces of the first programmable material segments. Top electrode lines are formed over the second programmable material lines.
Abstract:
Some embodiments include methods for fabricating memory cell constructions. A memory cell may be formed to have a programmable material directly against a material having a different coefficient of expansion than the programmable material. A retaining shell may be formed adjacent the programmable material. The memory cell may be thermally processed to increase a temperature of the memory cell to at least about 300° C., causing thermally-induced stress within the memory cell. The retaining shell may provide a stress which substantially balances the thermally-induced stress. Some embodiments include memory cell constructions. The constructions may include programmable material directly against silicon nitride that has an internal stress of less than or equal to about 200 megapascals. The constructions may also include a retaining shell silicon nitride that has an internal stress of at least about 500 megapascals.
Abstract:
A contact for memory cells and integrated circuits having a conductive layer supported by the sidewall of a dielectric mesa, memory cells incorporating such a contact, and methods of forming such structures.
Abstract:
Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming a substoichiometric oxide over the first conductive element, forming a second conductive element over the substoichiometric oxide, and oxidizing edges of the substoichiometric oxide by subjecting the substoichiometric oxide to an oxidizing environment to define a controlled oxygen vacancy conduction path near a center of the oxide.
Abstract:
Spin Torque Transfer (STT) memory cell structures and methods are described herein. One or more STT memory cell structures comprise an annular STT stack including a nonmagnetic material between a first ferromagnetic material and a second ferromagnetic material and a soft magnetic material surrounding at least a portion of the annular STT stack.
Abstract:
Some embodiments include apparatus and methods having a memory cell with a first electrode, a second electrode, and a dielectric located between the first and second electrodes. The dielectric may be configured to allow the memory cell to form a conductive path in the dielectric from a portion of a material of the first electrode to represent a first value of information stored in the memory cell. The dielectric may also be configured to allow the memory cell to break the conductive path to represent a second value of information stored in the memory cell.
Abstract:
A memory element and method of forming the same. The memory element includes a substrate supporting a first electrode, a dielectric layer over the first electrode having a via exposing a portion of the first electrode, a phase change material layer formed over sidewalls of the via and contacting the exposed portion of the first electrode, insulating material formed over the phase change material layer and a second electrode formed over the insulating material and contacting the phase change material layer.
Abstract:
Methods, devices, and systems associated with multilevel phase change memory cells are described herein. One or more embodiments of the present disclosure include operating a phase change memory device by placing a phase change memory cell in a reset state and applying a selected programming pulse to the phase change memory cell in order to program the cell to one of a number of intermediate states between the reset state and a set state associated with the cell. The selected programming pulse includes an uppermost magnitude applied for a particular duration, the particular duration depending on to which one of the number of intermediate states the memory cell is to be programmed.