Abstract:
Techniques are described for wireless communication. A first method includes receiving a transmission including a paging group indicator and an indication of a time window. The transmission may be received at a user equipment (UE) over an unlicensed radio frequency spectrum band. The first method may also include monitoring, based on the paging group indicator, the unlicensed radio frequency spectrum band during the time window to receive an asynchronous paging message from a base station. A second method includes transmitting the transmission over the unlicensed radio frequency spectrum band; performing a number of clear channel assessments (CCAs) on the unlicensed radio frequency spectrum band during the time window; and transmitting the paging message over the unlicensed radio frequency spectrum band at a transmission time during the time window. The transmission time may be based on a result of at least one of the CCAs.
Abstract:
Methods, apparatuses, systems, and devices are described for wireless communication. In one method, at least a first carrier may be monitored for an indication of a clear channel assessment (CCA) for a second carrier in a shared spectrum, and communication may take place using the second carrier based on the indication. In another method, a CCA may be performed for a second carrier second carrier of a shared spectrum, and an indication of the CCA for the second carrier may be transmitted on a first carrier.
Abstract:
Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes synchronizing clear channel assessment (CCA) slots across a plurality of base stations to determine availability of an unlicensed spectrum for transmissions in a next transmission interval. A second method includes performing a CCA during one of a plurality of CCA slots synchronized across a plurality of evolved Node Bs (eNBs) to determine availability of unlicensed spectrum for transmissions in a next transmission interval.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may identify uplink (UL) control information (UCI) to transmit during a subframe. The UE may then select a UL channel on which to transmit the UCI based on whether a shared data and control UL channel employs contention-based scheduling. For example, multiple UEs could contend for access to the same semi-persistently scheduled (SPS) physical UL shared channel (PUSCH). Each UE may utilize a different demodulation reference (DMRS) signal cyclic shift to identify their transmissions. In some cases, some UCI, such as channel state information (CSI), may be transmitted on a contention-based PUSCH, while other UCI, such as acknowledgement information, may be transmitted on a physical uplink control channel (PUCCH). In some cases, the channel selection may be based on a configuration received from a base station.
Abstract:
Methods, systems, and devices are described for dynamic cell mode indication and reporting channel and interference feedback for dormant cells in a carrier aggregation environment. Indicators of cell mode for one or more secondary cells are sent using a transmission mechanism and may configure active or dormant sub-periods within the indicated periods. Indicators of cell mode for a secondary cell may be transmitted on a carrier of the primary cell, or the indicators may be transmitted on carriers of the secondary cell. Dormancy may also be indicated by the presence or absence of a cell mode indicator for predetermined time periods. When CSI measurements occur for a carrier of a dormant cell, the UE may report CSI for the dormant periods, suppress CSI reporting for the dormant periods, adjust a reporting frequency for the dormant periods, or report some types of CSI and not others for the dormant periods.
Abstract:
Methods and apparatuses are described in which an unlicensed spectrum is used for Long Term Evolution (LTE) communications. A first method includes comparing past transmission activity on an unlicensed spectrum to an activity threshold, transmitting a first subframe type in the unlicensed spectrum during a next active transmission when the past transmission activity is greater than the activity threshold, and transmitting a second subframe type in the unlicensed spectrum during a next active transmission when the past transmission activity is lesser than the activity threshold, the second subframe type comprising a more robust subframe type than the first subframe type. A second method includes generating one or both of PUCCH signals and PUSCH signals based on interleaved signals that increase nominal bandwidth occupancy in an unlicensed spectrum, and transmitting the generated signals in the unlicensed spectrum. A third method includes receiving the PUCCH signals and the PUSCH signals.
Abstract:
Reference signals may not uniformly span over time and/or frequency on a resource unit. For example, reference signals may non-uniformly occupy symbols of a subframe. Alternatively, reference signals normally transmitted over certain tones of a subframe may have to be punctured to avoid collisions with a PSS and/or SSS transmitted over the same tones. Consequently, a UE may only be able to use a subset of reference signal tones for performing channel estimation. Accordingly, a method, an apparatus, and a computer program product for wireless communication are provided for improving channel estimation under a non-uniform signal pattern. The apparatus indicates to a UE to utilize a subset of reference signals to derive a channel estimate for demodulating data in a specific subframe, and transmits a plurality of subframes, the plurality of subframes including the reference signals and the specific subframe, the specific subframe including a PSS and/or SSS.
Abstract:
Various aspects described herein relate to receiving data at a user equipment (UE) in wireless communications. The UE monitors a control channel associated with first data resources of a first transmission time interval (TTI). Based on the monitoring, the UE can determine that the control channel schedules second data resources for the UE based on a second TTI. Accordingly, in response to such determination, the UE can process data received over the second data resources based on the second TTI, where a first duration of the first TTI is greater than a second duration of the second TTI.
Abstract:
Heterogeneous networks incorporate various small cells, such as femto cells and pico cells, in addition to a macro cell. Existing signals (e.g., PSS and SSS) configured as discovery reference signals (DRSs) may not be sufficient for a UE to discover different cells in a heterogeneous network. The disclosed aspects provide approaches for managing cell IDs for various DRS configurations to improve UE discovery of different cells in heterogeneous networks. In an aspect, a UE receives a first reference signal (e.g., based on a PCI) configured for performing a base station measurement by the UE. The UE further receives one or more second reference signals (e.g., based on a VCI which is associated with the PCI) configured for measurement by the UE. The UE performs the base station measurement based on the first reference signal and the one or more second reference signals.
Abstract:
Methods, systems, and devices for radio resource management (RRM) measurement and reporting for license assisted access (LAA) cells operating in unlicensed or shared frequency spectrum are described. A user equipment (UE) may receive an RRM measurement configuration including a channel occupancy parameter for measuring neighbor cells of a shared frequency band. The channel occupancy parameter may be used to determine a channel occupancy metric that may be sent to a base station for cell selection. The channel occupancy metric may include an averaged or filtered received signal strength and may be reported for serving cells and/or intra-frequency neighbor cells. A base station may further configure a UE with a discovery reference signals (DRS) measurement timing configuration (DMTC), which may include an extended DMTC search window. The UE may search for DRS transmissions from neighbor cells according to the DMTC.