Abstract:
An apparatus, comprising a first member, including two conductive paths, a conductive adhesive, a second member, including two conductive paths, each of the two conductive paths of the second member being connected to a corresponding one of the two conductive paths of the first member via the conductive adhesive, to form two electrical connections, and a peak-shaped dielectric dam, formed on the second member between the two electrical connections.
Abstract:
A coating layer drying system for a cathode ray tube (CRT) includes a furnace. A pedestal for placing a CRT bulb on is installed in the inside of the furnace. Both ends of a hose are fixed on the side walls of the furnace. A heater for heating low temperature air is connected to the hose. A pump for ventilating high pressure air is also connected to the hose. A pressure gauge for checking the inner pressure of the furnace is fixed on the upper part of the furnace. A temperature gauge for sensing the inner temperature of the furnace is also fixed on the upper part of the furnace. And, in addition, a controlling element for controlling the operation of the pump and the heater is installed next to the furnace.
Abstract:
A digitizer includes a flat panel medium with which a stylus contacts for information input, an outputting device for visualizing and outputting information according to the information input by the stylus, and a resistor installed between the outputting device and the flat panel medium in a predetermined pattern, wherein a flat panel glass substrate having a predetermined thickness is laminated on the outputting. The resistor has a predetermined conductivity and is laminated on the glass substrate in a predetermined pattern, and a thin film dielectric layer is laminated on the patternized resistor.
Abstract:
A device and method for drying a fluorescent material are provided. The device includes a container having a predetermined space for containing a fluorescent material, a first driver for rotating the container, a heater for heating the container, a vacuum unit for creating a partial vacuum in the container to discharge moist air from the container, a supplier for supplying dry air to the container, an exhausting unit for exhausting the fluorescent material dried in the container, and a controller for controlling the respective device and the first dryer. The drying method includes the steps of placing a cleaned fluorescent material into a dryer, heating the dryer while rotating the dryer, injecting dry air into the dryer and exhausting moist air from the dryer, and vacuum-transferring the fluorescent material from the dryer to a predetermined storage tank. With the device and method, drying a wet fluorescent material without hardening it obviates the need for a grinding process and reduces a drying time and manual processes. Thus, a fluorescent material drying process can be performed by few personnel in a clean working place.
Abstract:
A polymeric orientating material for a liquid crystal display including a charged pair electrostatically bound to the main chain of the polymer, and a ferroelectric liquid crystal display adopting the same as an orientation. The ferroelectric liquid crystal display of the present invention has improved memory stability through fast reduction of the anti-electrical field formed when an external electrical field is applied.
Abstract:
A back light for a liquid crystal display (LCD) includes a mold part. A first lead frame is installed on the inside of the mold part. In the first lead frame, the light emitting diodes are uniformly spaced apart from one another and each light emitting diode includes a chip. A first electrode is formed on one side of the chip and attached to the first lead frame. A second electrode is divided into two parts and formed on the other side of the chip. A plurality of conducting layers are respectively disposed between the light emitting diodes and each conducting layer is attached to the first lead frame. A plurality of connecting members connect each second electrode with each adjacent conducting layer. A second lead frame is installed on the inside of the mold part to be adjacent to the first lead frame. The second lead frame is connected to the adjacent second electrode by one of the connecting members.
Abstract:
A liquid crystal display (LCD) whose red, green and blue filters are formed on different substrates is disclosed. The LCD thus controls the width of the black matrix, enlarges the width of the filters and easily forms a color filter, having lower colorimetric purity and transmissivity than the other color filters. In an embodiment, both the blue filter and the black matrix are formed on the top glass substrate, while the red and green filters are formed on the bottom glass substrate opposite from the top substrate such that the red and green filters of the bottom substrate are aligned with the blue filter of the top substrate.
Abstract:
A cholesteric liquid crystal compound containing a central biphenyl ester group having a rigid central group, increased molecular stability and a wide liquid crystalline phase temperature range. Accordingly, display devices employing the cholesteric liquid crystal compound can be operated at high temperatures and has good multi-color characteristics.
Abstract:
A process for preparing a black matrix comprising the steps of producing a developed substrate by coating, drying, exposing and developing a photoresist on the inside of a substrate, producing a dried substrate by drying the developed substrate several times, coating a dye on the dried substrate and then drying the board, coating graphite on the dried substrate, and etching the graphite-coated substrate. This method makes it possible to perfectly etch the black matrix dot and increase volatility in fluorescent coating.
Abstract:
A film type compensation cell for an LCD which compensates for the twist angle of the liquid crystal in the LCD. The compensation cell has two compensation films, having orientation grooves formed on the surfaces thereof. Liquid crystal is between the two compensation films and is twisted in an opposite direction of the liquid crystal in the LCD. Compensation cells can be manufactured by forming orientation grooves on the surfaces of the compensation films and applying a liquid crystal therebetween. The compensation films are then pressed together and cut to the requisite size.