Abstract:
A threaded joint for steel pipes comprising a pin 1 and a box 2 each having a contact surface comprising a threaded portion 3 or 4 and an unthreaded metal contact portion 8 is provided with improved anti-galling propertied by forming a lubricating coating on the contact surface of at least one of the pin and the box, the lubricating coating exhibiting a self-repairing function by liquid lubrication and having a decreased greasiness. The lubricating coating is (1) a coating which comprises a lower lubricant layer which is in liquid form in the temperature range of above 0null C. and below 40null C. and an upper lubricant layer which is in solid form at 40null C., or (2) a coating which is semi-solid or solid at 40null C. and is formed of a mixture comprising a lubricating oil which is in liquid form in the temperature range of above 0null C. and below 40null C. and a wax which is in solid form at 40null C., the mixture preferably having been heated so as to liquefy the wax and dissolve in each other the wax and lubricant oil.
Abstract:
The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid (nullRNAnull). Direct, non-competitive binding assays are advantageously used to screen libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.
Abstract:
A threaded joint for an oil well pipe is provided which prevents the occurrence of galling at the time of repeated tightening and loosening and which provides a high degree of air tightness and has excellent galling resistance and air tightness without using a liquid lubricant such as a compound grease. 1. A lubricating film of an inorganic polymeric compound which has an M (metal element)—O (oxygen) backbone and has a solid lubricant dispersed therein is formed on a threaded portion or an unthreaded metal contact portion. 2. A phosphate film and the lubricating film of the inorganic polymeric compound is formed on the threaded portion or the unthreaded metal contact portion. 3. A Cu plating layer and the lubricating film of the inorganic polymeric compound or a lubricating film of a resin in which a solid lubricant is dispersed is formed on the threaded portion or the unthreaded metal contact portion. 4. A lubricating film of the inorganic polymeric compound or a lubricating film of the polymer and a rust preventing film containing an alkali metal salt of a carboxylic acid or an alkali earth metal salt of a carboxylic acid are formed on the threaded portion or the unthreaded metal contact portion.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
A powdery mold-releasing lubricant according to the present invention uses a powdery mixture of a powdery organic material, which is evaporated or decomposed by heating to generate a gas, and a powdery inorganic material. A gas-solid mixed layer formed with the gas generated from the powdery mixture and the powdery inorganic material is used as a heat-insulating boundary layer. The powdery mold-releasing lubricant is inexpensive and has a superior mold lubricity.
Abstract:
A process is disclosed for manufacturing a lubricant a composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A self-lubricating coating is provided which includes a mixture of a curable acrylate composition including a dipentaerythritol pentaacylate and a solid lubricant, such as polytetraflourethylenr. The curable acrylate composition may also include triethylene glycol dimethacrylate. An aramid pulp may also be added to the coating mixture. Also disclosed is a method of manufacturing the coating, and a self-lubricating bearing having the coating disposed on its surface.
Abstract:
The invention relates to a lubricant which can be used as a mandrel lubricant with a content of 75 to 90 wt. % of graphite and contains 1 to 10 wt. % of a phosphate. Said lubricant can also contain 1 to 4 wt % alkali silicate, 1 to 10 wt. % bentonite, 0.5 to 1 wt. % silico-phosphate and common solid lubricants. Said lubricant is preferably used as an aqueous suspension with a solid content of 20 to 40 wt. %.
Abstract:
The present invention provides compositions and methods for the coating and/or ballistics conditioning of firearm projectiles and firearm components including gun barrels, firearm chambers, fully assembled cartridges, shot gun shells, shotgun wads, shot capsules and sabots with molybdenum disulfide. The composition comprises powdered molybdenum disulfide suspended in a carrier comprising a volatile solvent and a binder selected from cellulosic-, alkyd- and acrylic-resins. Methods for the conditioning of firearm bores by the formation of a hardened layer comprising a product of the reaction or interaction of molybdenum disulfide with materials in the barrel bore are also disclosed.