Abstract:
An internal combustion engine has one or more engine cylinders (12) within which fuel is combusted and a pair of cylinder valves (14, 16) spring-biased (22, 24) closed but open in unison to place the respective cylinder in flow communication with one of an intake and an exhaust. A bridge (34) bridges ends of the pair external to the cylinder and has a spherically concave depression (42) in a face that is opposite a face that bears against the ends of the pair. The depression is located intermediate locations at which the ends of the pair bear against the bridge. A pivot foot (44) has a spherically convex surface (46) seated with substantial conformity in the depression and a flat surface (48) opposite the spherically convex surface. The flat surface of the pivot foot abuts a flat surface (50) of a rocker (30) that when rocked acts through the pivot foot and bridge to open the respective pair of valves.
Abstract:
A switchable valve train for gas-exchange valves of internal combustion engines with a rocker arm device (1), in which a rocking motion about a rocker arm axis (3) can be introduced by at least one cam (2a, 2b), one tappet, or the like, wherein this rocking motion can be transmitted to at least one valve (4). The rocker arm device (1) is formed from at least one cam lever part (5) in working connection with the cam (2) and a valve lever part (6) in working connection with the valve (4), which are supported so that they can rock about the rocker arm axis (3). A coupling device is constructed between the cam lever part (5) and the valve lever part (6), in order to selectively engage and disengage the transmission of the rocking motion.
Abstract:
A multiple-cylinder internal combustion engine having a camshaft-driven valvetrain with a camshaft disposed within an engine block includes at least two intake and/or exhaust valves with multiple valves operated by a common lifter and pushrod that engages a follower having multiple independent lash adjusters coupled to associated rocker arms. The lifter contacts the common camshaft lobe and a corresponding pushrod that engages a reciprocating bucket follower with a compliant coupling to corresponding rocker arms.
Abstract:
Apparatus for modifying engine valve lift to produce an engine valve event in an internal combustion engine comprises actuation means (100) for operating at least one exhaust valve (300a or 300), and control means (50) for moving the actuation means (100) between its inoperative position (0) and operative position (1). In the inoperative position (0), the actuation means (100) is disengaged from the at least one exhaust valve (300a or 300), and in the operative position (1), the actuation means (100) holds open the at least one exhaust valve (300a or 300) to produce the modified engine valve lift for the engine valve event, which includes an engine braking event (10). The actuation means (100) includes a motion limiting means for controlling movement of the actuation means (100) between the inoperative position (0) and the operative position (1), which occurs after the at least one exhaust valve (300a or 300) is actuated by the normal exhaust valve lifter (200). The actuation means (100) also includes a lash adjusting system for setting a lash (132) between the actuation means (100) and the at least one exhaust valve (300a or 300). The actuation means (100) further includes mechanical linkage means for transmitting load generated by the engine valve event to a housing (125). The mechanical linkage means include at least one system selected from the group consisting of: a rotatable device, a slidable device, a ball-locking device, and a toggle device. The actuation means (100) can be integrated into a valve bridge (400) and other valve train components, such as a rocker arm, wherein a plunger (136) is slidably disposed between the inoperative position (0) and the operative position (1). The control means (50) comprises at least one means selected from the group consisting of: hydraulic means, mechanical means, electric means, magnetic means, and a combination thereof.
Abstract:
A novel device for controlling the compression pressure of an internal combustion engine is disclosed.The combustion chamber of each cylinder of the engine is divided into two virtual spaces, a gas exchange space and a control space. The intake and exhaust valves move in a plane substantially perpendicular to the cylinder centerline and open into the gas exchange space.The position of a preferably toroidal volume control slider determines the control space volume and subsequently, the geometrical compression ratio of the engine. At least one actuation cam bidirectionally drives said control slider, by means of a slot and captive roller arrangement.The device further comprises actuator means to rotate the cam to a predetermined angular position, as a function of engine load.Thus, the device of the invention is capable of maintaining a constant compression pressure, under varying load, by altering the geometrical compression ratio of the engine.
Abstract:
A four-stroke engine (1) structured to introduce fresh air and EGR gas into a cylinder (1a) includes a blowdown supercharging system (40) using a combustion chamber internal pressure when exhaust valves open in an expansion stroke of a first cylinder (hereinafter denoted as an exhaust blowdown pressure) for introducing EGR gas into a second cylinder from near a bottom dead center of an intake stroke to near a bottom dead center of a compression stroke of the second cylinder which is different from the first cylinder in combustion timing, and a secondary air supply system (20) supplying secondary air to an exhaust port (1e) of the second cylinder prior to arrival of the exhaust blowdown pressure at the second cylinder. The secondary air in the exhaust port and the EGR gas are supercharged into the second cylinder by the exhaust blowdown pressure from the first cylinder.
Abstract:
A method and system for actuating an internal combustion engine exhaust valve to provide compression release actuation during an engine braking mode of engine operation and early exhaust valve opening actuation during a positive power mode of engine operation is disclosed. The system may include a first cam having a compression release lobe and an early exhaust valve opening lobe connected to a hydraulic lost motion system including a first rocker arm. A hydraulically actuated piston may be selectively extended from the hydraulic lost motion system to provide the exhaust valve with compression release actuation or early exhaust valve opening actuation. The hydraulically actuated piston may be provided as a slave piston in a master-slave piston circuit in a fixed housing, or alternatively, as a hydraulic piston slidably disposed in a rocker arm. The method and system may further provide exhaust gas recirculation and/or brake gas recirculation in combination with compression release actuation and early exhaust valve opening actuation.
Abstract:
A system for actuating an engine valve is disclosed. The system may include a lost motion housing having two spaced collars surrounding a rocker shaft. The lost motion housing may include an internal hydraulic circuit connecting a hydraulic fluid supply passage with an actuator piston. The system may include a means for securing the lost motion housing in a fixed position relative to the rocker shaft.
Abstract:
A rolling bearing comprises a roller, a roller shaft provided inwardly of the roller, and rolling elements provided between the roller and the roller shaft, the roller shaft having a nitrogen-rich layer and is configured such that its race surface, on which the rolling elements run, has not smaller than 11 in the JIS austenite grain size number and not smaller than HV653 in the Vickers hardness number, at both ends not greater than HV300, and at its core beneath a widthwise midpoint of the race surface not smaller than HV550.
Abstract:
An adjustment unit has a driver for turning an adjustment screw, a sleeve having a hexagonal hole connected to a rotating shaft, an insertion member connected to the upper end of the driver and of which a part is inserted in the sleeve, a pipe concentrically provided around the driver and having at its forward end a socket for rotating an adjustment nut, and a gear body provided concentric with the pipe and rotating the pipe. The sleeve has a short tiltable support section in contact with the hexagonal hole. A gap is provided between the hexagonal hole of the gear body and a hexagonal column section of the pipe. The driver and the pipe tilt about the tilting support section as the fulcrum.