Abstract:
Ambipolar conduction can be reduced in carbon nanotube transistors by forming a gate electrode of a metal. Metal sidewall spacers having different workfunctions than the gate electrode may be formed to bracket the metal gate electrode.
Abstract:
One embodiment of the invention includes a high hole mobility p-channel GaAsySb1-y quantum well with a silicon substrate and an InxAl1-xAs barrier layer.
Abstract translation:本发明的一个实施方案包括具有硅衬底和In x Al 1-xAs阻挡层的高空穴迁移率p沟道GaAsySb1-y量子阱。
Abstract:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
Abstract:
A group III-V material device may have a capping layer on a barrier region, which may provide a high quality interface for a high-k gate dielectric. This may improve the performance of the device by reducing gate leakage and preserve the high-mobility properties of the quantum well channel region of the device.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming at least one metal source/drain on a gate dielectric, wherein the at least one metal source/drain is adjacent to a channel region, wherein the channel region comprises at least one carbon nanotube.
Abstract:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.
Abstract:
A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
Abstract:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.
Abstract:
A semiconductor device comprising a gate electrode formed on a gate dielectric layer formed on a semiconductor film. A pair of source/drain regions are formed adjacent the channel region on opposite sides of the gate electrode. The source and drain regions each comprise a semiconductor portion adjacent to and in contact with the semiconductor channel and a metal portion adjacent to and in contact with the semiconductor portion.
Abstract:
A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.