摘要:
Methods and structures provide horizontal conductive lines of fine pitch and self-aligned contacts extending from them, where the contacts have at least one dimension with a more relaxed pitch. Buried hard mask materials permit self-alignment of the lines and contacts without a critical mask, such as for word-line electrode lines and word-line contacts in a memory device.
摘要:
Some embodiments include methods of forming semiconductor constructions. Carbon-containing material is formed over oxygen-sensitive material. The carbon-containing material and oxygen-sensitive material together form a structure having a sidewall that extends along both the carbon-containing material and the oxygen-sensitive material. First protective material is formed along the sidewall. The first protective material extends across an interface of the carbon-containing material and the oxygen-sensitive material, and does not extend to a top region of the carbon-containing material. Second protective material is formed across the top of the carbon-containing material, with the second protective material having a common composition to the first protective material. The second protective material is etched to expose an upper surface of the carbon-containing material. Some embodiments include semiconductor constructions, memory arrays and methods of forming memory arrays.
摘要:
Some embodiments include a construction having oxygen-sensitive structures directly over spaced-apart nodes. Each oxygen-sensitive structure includes an angled plate having a horizontal portion along a top surface of a node and a non-horizontal portion extending upwardly from the horizontal portion. Each angled plate has an interior sidewall where an inside corner is formed between the non-horizontal portion and the horizontal portion, an exterior sidewall in opposing relation to the interior sidewall, and lateral edges. Bitlines are over the oxygen-sensitive structures, and have sidewalls extending upwardly from the lateral edges of the oxygen-sensitive structures. A non-oxygen-containing structure is along the interior sidewalls, along the exterior sidewalls, along the lateral edges, over the bitlines, and along the sidewalls of the bitlines. Some embodiments include memory arrays, and methods of forming memory cells.
摘要:
Resistance variable memory cells and methods are described herein. One or more methods of forming a resistance variable memory cell include forming a silicide material on a terminal of a select device associated with the resistance variable memory cell, forming a modified region of the silicide material by modifying a resistivity of a region of the silicide material, forming a conductive element on at least a portion of the modified region, and forming a resistance variable material on the conductive element.
摘要:
Memory arrays and methods of forming the same are provided. One example method of forming a memory array can include forming a conductive material in a number of vias and on a substrate structure, the conductive material to serve as a number of conductive lines of the array and coupling the number of conductive lines to the array circuitry.
摘要:
Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction. The second electrically conductive lines interconnect the pillars along the second direction.
摘要:
A bipolar selection transistor and a circuitry MOS transistor for a memory device are formed in a semiconductor body. The bipolar selection transistor is formed by implanting a buried collector, implanting a base region on the buried collector, forming a silicide protection mask on the semiconductor body, and implanting an emitter region and a control contact region. The circuitry MOS transistor is formed by defining a gate on the semiconductor body, forming lateral spacers on the sides of the gate and implanting source and drain regions on the sides of the lateral spacers. Then, a silicide region is formed on the emitter, base contact, source and drain regions and the gate, in a self-aligned way. The lateral spacers are multilayer structures including at least two different layers, one of which is used to form the silicide protection mask on the bipolar selection transistor. Thereby, the dimensions of the lateral spacers are decoupled from the thickness of the silicide protection mask.
摘要:
A Phase Change Memory device with reduced programming disturbance and its operation are described. The Phase Change Memory includes an array with word lines and bit lines and voltage controlling elements coupled to bit lines adjacent to an addressed bit line to maintain the voltage of the adjacent bit lines within an allowed range.
摘要:
A phase change memory device with reduced programming disturbance and its operation are described. The phase change memory includes an array with word lines and bit lines and voltage controlling elements coupled to bit lines adjacent to an addressed bit line to maintain the voltage of the adjacent bit lines within an allowed range.