Abstract:
A controller may predict an estimated occurrence of a high-resistance state of a dimmer, wherein the high-resistance state occurs when the dimmer begins phase-cutting an alternating current voltage signal. The controller may also be configured to operate in a trailing-edge exposure mode for a period of time wherein the period of time includes a time of the estimated occurrence of the high-resistance state in order to allow the controller to detect the occurrence of the high-resistance state, wherein energy is transferred from an input to a dissipative element during the trailing-edge exposure mode. The controller may further be configured to minimize a time between a beginning of the period of time and the estimated occurrence of the high-resistance state by modifying the period of time based on an estimated charging time of a capacitor of the dimmer.
Abstract:
In accordance with embodiments of the present disclosure, an apparatus for measuring acceleration may include a spring-mounted mass, a positional encoder configured to measure a position of the spring-mounted mass and output one or more signals indicative of a sine and a cosine of the position, a driver to set and maintain an oscillation of the spring-mounted mass, and a decoder configured to process the one or more signals to calculate an acceleration of the spring-mounted mass.
Abstract:
An LED lighting device includes an auxiliary power supply that supplies power to a control circuit of the LED lighting device that receives an input from a terminal of a light-emitting diode (LED) string of the lighting device that has a substantially lower voltage than the line voltage to which the lighting device is connected. The terminal may be within the LED string, or may be an end of the string. A linear regulator may be operated from the voltage drop across a number of the LEDs in the string so that the energy wasted by the auxiliary power supply is minimized. In other designs, the auxiliary power supply may be intermittently connected in series with the LED string only when needed. The intermittent connection can be used to forward bias a portion of the LED string when the voltage supplied to the LED string is low, increasing overall brightness.
Abstract:
In accordance with these and other embodiments of the present disclosure, systems and methods may include a controller configured to be coupled to an audio speaker, wherein the controller receives an audio input signal, and based on a displacement transfer function associated with the audio speaker, processes the audio input signal to generate an output audio signal communicated to the audio speaker, wherein the displacement transfer function correlates an amplitude and a frequency of the audio input signal to an expected displacement of the audio speaker in response to the amplitude and the frequency of the audio input signal.
Abstract:
A system and method for charging heavy capacitive loads may comprise an n-stage stacked charging circuit wherein n is an integer greater than or equal to 2 and wherein the n-stage stacked charging circuit may comprise n−1 capacitors and a voltage supply, each sequentially electrically connected to the capacitive load in an order through a respective first through nth switch during a respective first through nth charging time period; the n−1th capacitors each sequentially electrically connected to the capacitive load in reverse order during a first through n−1th discharging time period through the respective n−1th through first switches. The system and method may comprise an n+1th switch electrically connecting the capacitive load to ground during an nth discharging period. The capacitive load may comprise a piezoelectric element, which may comprise an inkjet printer head inkjet actuator.
Abstract:
A processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
A personal audio device, such as a headphone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio, and the anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear at the reference microphone. A processing circuit uses the reference microphone to generate the anti-noise signal, which can be generated by an adaptive filter. The processing circuit also models an acoustic leakage path from the transducer to the reference microphone and removes elements of the source audio appearing at the reference microphone signal due to the acoustic output of the speaker. Another adaptive filter can be used to model the acoustic leakage path.
Abstract:
Power consumption in a start-up circuit for a LED-based light bulb may be reduced by digitally switching a transistor of the start-up circuit coupled to the input voltage. When the transistor is digitally switched between on and off, a reduced amount of power is dissipated by the transistor, because it may not enter a saturation region of operation where the resistance of the transistor between drain and source terminals increases. The transistor may be coupled to a voltage regulator for generating one or more output voltages, including a supply voltage for a host controller IC. The transistor may be switched on and off by a digital signal generated by logic circuitry, which may decide to switch the transistor on and off based on a voltage level at an output of the voltage regulator.
Abstract:
An apparatus may include a dimmer output voltage emulator for causing a power converter interface circuit to draw current from a capacitor in the power converter interface during a period of time when a dimmer coupled to the power converter interface circuit is non-conducting to generate an emulated dimmer output voltage. The emulated dimmer output voltage may emulate part of a cycle of a non-zero AC dimmer output voltage of the dimmer after a triac of the dimmer prematurely stops conducting that would occur if the triac continued conducting during the part of the cycle. The dimmer output voltage emulator may include a pull-down circuit to pull down current of the interface circuit and generally decrease the emulated dimmer output voltage during a first period of time and a hold circuit to maintain the emulated dimmer output voltage below a substantially non-zero threshold value during a second period of time.
Abstract:
An RMS detector uses the concept of the k-NN (classifying using nearest neighbors)—algorithm in order to obtain RMS values. A rms detector using first-order regressor with a variable smoothing factor is modified to penalize samples from center of data in order to obtain RMS values. Samples which vary greatly from the background noise levels, such as speech, scratch, wind and other noise spikes, are dampened in the RMS calculation. When background noise changes, the system will track the changes in background noise and include the changes in the calculation of the corrected RMS value. A minimum tracker runs more often (e.g. two or three times) than the rate as in prior art detectors and methods, tracks the minimum rms value, which is to compute a normalized distance value, which in turn is used to normalize the smoothing factor. From this data, a corrected or revised RMS value is determined as the function of the previous RMS value multiplied by one minus the smoothing factor plus the smooth factor times the minimum rms value to output the corrected RMS for the present invention. The rms value is used to generate a reset signal for the minimum tracker and is used to avoid deadlock in the tracker, for example, when the background signal increases/decreases over time.