Abstract:
A device that includes a memristive Akers logic array, wherein the memristive Akers logic array comprises multiple primitive logic cells that are coupled to each other; wherein each primitive logic cell comprises at least one memristive device.
Abstract:
A multistate register, comprising: a flip-flop that comprises a first latch, a second latch and an intermediate gate coupled between the first and second latches; multiple memristive devices; and an interface coupled between the multiple memristive devices and the flip-flop; wherein the multistate register is arranged to operate in a memristive device write mode, in a memristive device read mode and in a flip-flop mode; wherein when operating in the memristive device read mode, the interface is arranged to write to a first selected memristive device of the multiple memristive devices a first logic value stored in the first latch; wherein when operating in the memristive device write mode, the interface is arranged to write to the second latch a second logic value stored in a second selected memristive device of the multiple memristive devices; and wherein when operating on a flip-flop mode logic the interface is prevented from transferring values between the flip flop and the memristive devices.
Abstract:
A method for creating a metabolic map of metabolic reactions by selecting metabolic reactions active in cancer cells. A core set of metabolic reactions occurring in the cancer cells is designated. For each permutation, whether inhibition of the k-th non-core reaction together with inhibition of all previously deleted non-core reactions results in inhibition of any of the core reactions or results in inhibition of the flux of biomass metabolites to biomass is determined. If inhibition of the k-th non-core reaction and inhibition of all previously deleted non-core reactions does not result in inhibition of any core reactions and does not result in inhibition of the flux of biomass metabolites to biomass, then the k-th non-core reaction is deleted from the set of non-core reactions. The number of permutations for which the k-th non-core reaction is not deleted is determined and a metabolic map is then created based on that number.
Abstract:
A sensing device includes an array of sensing elements. Each sensing element includes a thermal infrared sensor, configured to output an electric signal in response to an intensity of infrared radiation that is incident on the sensor. An individual reflector is formed integrally with the sensor at a location separated from the sensor by one quarter wave at a selected wavelength of the infrared radiation.
Abstract:
An embodiment of the invention provides a use of an effective amount of a transition metal complex of a corrole, an optically active isomer thereof, or a pharmaceutically acceptable salt thereof for treating a disease of the eye and/or the kidney in a subject suffering from diabetes. An embodiment of the invention further provides a use of a transition metal complex of a corrole, an optically active isomer thereof, or a pharmaceutically acceptable salt thereof for lowering serum glucose and serum triglyceride levels in a subject suffering from diabetes.
Abstract:
A fiber-reinforced hydrogel composite is provided. The composite includes a hydrogel and a fibrous component containing a plurality of fibers. Length of each of the plurality of fibers is less than about 1,000 μm. A method of preparing a fiber-reinforced hydrogel composite is also provided. The method includes coating a hydrogel precursor solution on a substrate to form a hydrogel precursor film, depositing the plurality of fibers onto the hydrogel precursor film, and allowing the hydrogel precursor film to form a hydrogel film, (ii) thereby forming the fiber-reinforced hydrogel composite. A scaffold containing the fiber-reinforced composite, and a tissue repair method (iii) using the fiber-reinforced composite are also provided.
Abstract:
A method for determining an optimal location for positioning an image capturing device within a volume, the method including, obtaining a plurality of points to be visible from the image capturing device, performing inversion on points located in the vicinity of the plurality of points thus creating a computerized inversed object, each point in the vicinity of the plurality of point is translated to a corresponding point in the computerized inversed object, defining a convex hull of the inversed object, determining if a point of the plurality of points is visible from the viewpoint according to the position of its corresponding point on the convex hull relative to its neighbor points, repeating said determining for multiple locations within the volume, determining whether a predetermined set of points is visible from each location, selecting the optimal location of the image capturing device based on the results of said repeated determining.
Abstract:
A method and a device that includes a set of multiple pipeline stages, wherein the set of multiple pipeline stages is arranged to execute a first thread of instructions; multiple memristor based registers that are arranged to store a state of another thread of instructions that differs from the first thread of instructions; and a control circuit that is arranged to control a thread switch between the first thread of instructions and the other thread of instructions by controlling a storage of a state of the first thread of instructions at the multiple memristor based registers and by controlling a provision of the state of the other thread of instructions by the set of multiple pipeline stages; wherein the set of multiple pipeline stages is arranged to execute the other thread of instructions upon a reception of the state of the other thread of instructions.
Abstract:
A method of imaging a region containing an internal target tissue of a subject, comprising: inserting an intracorporeal ultrasound device to the subject; positioning an extracorporeal ultrasound device opposite to said intracorporeal ultrasound device, such that at least a portion of the region is interposed between said intracorporeal ultrasound device and said extracorporeal ultrasound device; using said intracorporeal ultrasound device and said extracorporeal ultrasound device to transmit ultrasonic radiation through the region; scanning the region using at least one of said intracorporeal ultrasound device and said extracorporeal ultrasound device; and analyzing said ultrasonic radiation so as to generate an image of the region by transmission ultrasound computerized tomography (TUCT).
Abstract:
A device, comprising: an array of cells, wherein the cells are arranged in columns and rows; wherein each cell comprises a memristive device; an interfacing circuit that is coupled to each cell of the array of cells; wherein the interfacing circuit is arranged to: receive or generate first variables and second variables; generate memristive device input signals that once provided to memristive devices of the array will cause a change in a state variable of each of the memristive devices of the cells of the array, wherein the change in the state variable of each of the memristive devices of the cells of array reflects a product of one of the first variables and one of the second variables; provide the memristive device input signals to memristive devices of the array; and receive output signals that are a function of at least products of the first variables and the second variables;