Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security/smart home objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security/smart home objectives.
Abstract:
Various methods and systems for hazard detectors are presented. Such hazard detectors may include one or more hazard sensors that are configured to detect the presence of one or more types of hazards. Such hazard detectors may include a circular or a ring-shaped light comprising a plurality of lighting elements. Such a ring-shaped light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such hazard detectors may include a processing system configured to cause the ring-shaped light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states corresponding to the battery module and the plurality of hazard sensors.
Abstract:
A thermostat may include a processing system, a plurality of HVAC connectors configured to receive a corresponding plurality of HVAC control wires, and a connection sensing circuit coupled to the plurality of HVAC connectors and configured to provide an indication to the processing system of whether a wire is inserted for each of the plurality of HVAC connectors. The processing system may be configured to receive an indication from the connection sensing circuit when an HVAC connector in the plurality of HVAC connectors has a wire inserted therein, the HVAC connector being associated with a plurality of possible HVAC functions. The processing system may also be configured to display the plurality of possible HVAC functions on a user interface, to receive input selecting one of the possible HVAC functions for the HVAC connector, and to operate the selected HVAC function through the HVAC connector.
Abstract:
Systems and methods are described for controlling fan-only cooling. A first phase of a first cooling cycle may be initiated in an enclosure using an air conditioning system having a compressor and a fan that passes air over an evaporator coil. The first phase may include activation of the compressor and activation of the fan. A relative humidity may be measured within the enclosure during the first phase of the first cooling cycle. Subsequent to the first phase and in response to the relative humidity being determined to be below a threshold relative humidity, a second phase of the first cooling cycle may be initiated during which the fan is activated but the compressor is not activated.
Abstract:
Methods and devices for controlling a heating, ventilation, and air conditioning (HVAC) system by a thermostat are provided. Input can be received from a user via a thermostat, the input being indicative of an adjustment of an HVAC-related setting. On a real-time basis, the HVAC-related setting that is being adjusted can be compared against a feedback criterion designed to indicate a circumstance under which feedback is to be presented to the user. The circumstance can be indicative of an achievement of a HVAC-related setting of a predetermined responsibility level with respect to an energy usage of the HVAC system. Upon a real-time determination that the feedback criterion is satisfied, visual feedback can be caused to be presented to the user in real-time. The real-time feedback can include a visual icon having a visual appeal corresponding to a desirability of the satisfaction of the feedback criterion.
Abstract:
Embodiments provided herein relate to controlling a household via one or more household policies. In one embodiment, a method includes: receiving, at a processor, a household policy for a household, the household policy related to attaining an end goal; determining, via interpretation of the household policy by the processor, an end goal state of the household policy; incrementally modifying a control trigger threshold of a conditionally controlled smart device over time until the end goal state is reached; wherein the control trigger threshold indicates when the conditionally controlled smart device should be controlled to implement a particular function.
Abstract:
A computing system performs a method of determining cumulative exposure to a gas. The computing system receives data that correspond to local concentrations of a gas from a plurality of stationary gas sensors in a home. Respective stationary gas sensors are located at respective fixed locations in respective rooms in the home. The computing system also receives data that correspond to occupancy of the home, including occupancy by a first occupant. The computing system determines a cumulative exposure of the first occupant to the gas in the home, based at least in part on the received data that correspond to local concentrations of the gas and the received data that correspond to occupancy of the home. The computing system performs and/or sends instructions to perform one or more predefined operations in accordance with the determined cumulative exposure of the first occupant.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first smart-home device that was previously paired with the user account. The method may also include transmitting, to the first smart-home device and using the first wireless protocol, a transmission that instructs the first smart-home device to establish second wireless communications with a second smart-home device, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first smart-home device using the first wireless protocol, where the credentials are then sent from the first smart-home device to the second smart-home device using the second wireless protocol, such that the second smart-home device can pair with the user account using the first wireless protocol.
Abstract:
Embodiments of the present invention provide a temperature control system having programmable, interchangeable docking thermostats that work cooperatively to achieve desired temperature control in an enclosure. Various embodiments provide first and second thermostats each having one or more temperature sensors. Also provided may be a first HVAC docking device directly wired to the HVAC wire system and a second docking device that may connect to a power source other than the HVAC wire system, where each of the docking devices have an electrical connector mateable to the electrical connector of the docking thermostats. The first and second docking thermostats may interchangeably mate to the docking devices, and either may control the HVAC system to achieve a desired comfort level.