Abstract:
A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.
Abstract:
In one embodiment, a method of forming a semiconductor device is provided that may include forming a semiconductor device including a gate structure on a channel portion of III-V semiconductor substrate. The III-V semiconductor substrate including a III-V base substrate layer, an aluminum containing III-V semiconductor layer that is present on the III-V base substrate layer, and a III-V channel layer. Oxidizing a portion of the aluminum containing III-V semiconductor layer on opposing sides of the gate structure. Forming a raised source region and a raised drain region over the portion of the aluminum containing III-V semiconductor layer that has been oxidized. Forming interconnects to the raised source region and the raised drain region.
Abstract:
Transistors with self-aligned source/drain regions a gate structure embedded in a substrate; self-aligned source and drain contacts embedded in the substrate around the gate structure; and a channel layer over the gate structure and self-aligned source and drain contacts. The source and drain contacts extend above the channel layer.
Abstract:
Sensors, processes for manufacturing the sensors, and processes of detecting a target molecule with the sensor generally includes a substrate including a channel and first and second electrodes electrically connected to the channel, wherein the channel includes a monolayer of surface functionalized graphene or surface functionalized carbon nanotubes, wherein the surface functionalized graphene or surface functionalized carbon nanotubes include an imidazolidone compound.
Abstract:
Non-volatile switches and methods for making the same include a gate material formed in a recess of a substrate; a flexible conductive element disposed above the gate material, separated from the gate material by a gap, where the flexible conductive element is supported on at least two points across the gap, and where a voltage above a gate threshold voltage causes a deformation in the flexible conductive element such that the flexible conductive element comes into contact with a drain in the substrate, thereby closing a circuit between the drain and a source terminal. The gap separating the flexible conductive element and the gate material is sized to create a negative threshold voltage at the gate material for opening the circuit.
Abstract:
A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
Abstract:
Differential, plasmonic, non-dispersive infrared gas sensors are provided. In one aspect, a gas sensor includes: a plasmonic resonance detector including a differential plasmon resonator array that is resonant at different wavelengths of light; and a light source incident on the plasmonic resonance detector. The differential plasmon resonator array can include: at least one first set of plasmonic resonators interwoven with at least one second set of plasmonic resonators, wherein the at least one first set of plasmonic resonators is configured to be resonant with light at a first wavelength, and wherein the at least one second set of plasmonic resonators is configured to be resonant with light at a second wavelength. A method for analyzing a target gas and a method for forming a plasmonic resonance detector are also provided.
Abstract:
A method of fabricating a visibly transparent, ultraviolet (UV) photodetector is provided. The method includes laying a first electrode onto a substrate surface, the first electrode being formed of a carbon-based, single-layer material. A block is patterned over an end of the first electrode and portions of the substrate surface. The block is formed of a visibly transparent material that is able to be deposited into the block at 75° C.-125° C. In addition, the method includes masking a section of the block and exposed sections of the first electrode. A second electrode is laid onto an unmasked section of the block with an end of the second electrode laid onto the substrate surface. The second electrode is formed of the carbon-based, single-layer material.
Abstract:
Sub-lithographic structures configured for selective placement of carbon nanotubes and methods of fabricating the same generally includes alternating conformal first and second layers provided on a topographical pattern formed in a dielectric layer. The conformal layers can be deposited by atomic layer deposition or chemical vapor deposition at thicknesses less than 5 nanometers. A planarized surface of the alternating conformal first and second layers provides an alternating pattern of exposed surfaces corresponding to the first and second layer, wherein a width of at least a portion of the exposed surfaces is substantially equal to the thickness of the corresponding first and second layers. The first layer is configured to provide an affinity for carbon nanotubes and the second layer does not have an affinity such that the carbon nanotubes can be selectively placed onto the exposed surfaces of the alternating pattern corresponding to the first layer.
Abstract:
A method for manufacturing a semiconductor device includes forming a first dielectric layer on a substrate, forming a carbon nanotube (CNT) layer on the first dielectric layer, forming a second dielectric layer on the carbon nanotube (CNT) layer, patterning a plurality of trenches in the second dielectric layer exposing corresponding portions of the carbon nanotube (CNT) layer, forming a plurality of contacts respectively in the plurality of trenches on the exposed portions of the carbon nanotube (CNT) layer, performing a thermal annealing process to create end-bonds between the plurality of the contacts and the carbon nanotube (CNT) layer, and depositing a passivation layer on the plurality of the contacts and the second dielectric layer.