Abstract:
Processes, systems, and devices for occlusion detection for video-based object tracking (VBOT) are described herein. Embodiments process video frames to compute histogram data and depth level data for the object to detect a subset of video frames for occlusion events and generate output data that identifies each video frame of the subset of video frames for the occlusion events. Threshold measurement values are used to attempt to reduce or eliminate false positives to increase processing efficiency.
Abstract:
A pressure sensing device is disclosed in the present disclosure. The pressure sensing device includes a bottom plate, a flexible shell and a MEMS pressure sensor. The flexible shell covers the bottom plate for forming a hermetical cavity, and the MEMS pressure sensor is accommodated in the hermetical cavity. Air in the hermetical cavity is compressed when the flexible shell is pressed, the MEMS pressure sensor is configured for detecting variation of an air pressure within the hermetical cavity when the flexible shell is pressed, and convert the variation of the air pressure into an electric signal.
Abstract:
A microphone is disclosed. The microphone includes a housing and a circuit board cooperatively forming an accommodation space to accommodate a MEMS chip. The housing forms a first sound channel and the circuit board forms a second sound channel. Further, the microphone includes a controller for controlling the switch of the first and second sound channels.
Abstract:
An electromagnetic shielding composite includes a polymer and a carbon nanotube film structure. The carbon nanotube structure includes a number of carbon nanotubes disposed in the polymer. The number of carbon nanotubes are parallel with each other.
Abstract:
The present invention is directed to biphenyl derivatives, pharmaceutical compositions containing them and their use in the treatment and/or prevention of disorders and conditions ameliorated by antagonizing one or more glucagon receptors, including for example metabolic diseases such as Type II diabetes mellitus and obesity.
Abstract:
A method is provided for detecting a body part in a video stream from a mobile device. A video stream of a human subject is received from a camera connected to the mobile device. The video stream has frames. A first frame of the video stream is identified for processing. This first frame is then partitioned into observation windows, each observation window having pixels. In each observation window, non-skin-toned pixels are eliminated; and the remaining pixels are compared to determine a degree of entropy of the pixels in the observation window. In any observation window having a degree of entropy above a predetermined threshold, a bounded area is made around the region of high entropy pixels. The consistency of the entropy is analyzed in the bounded area. If the bounded area has inconsistently high entropy, a body part is determined to be detected at that bounded area.
Abstract:
A method for simulating magnetic resonance signals is proposed. A lattice array where each point in the array has several magnetic resonance sensitive particles is provided. Statistic property of each point is set. A raw magnetic resonance imaging data is calculated based on statistic property of each point and a magnetic resonance imaging sequence to be applied. A system for simulating magnetic resonance signals is further proposed. By considering statistic property of each point, it can distinguish every part of the object to be scanned and really reflect the structure of object without using a real magnetic resonance imaging device. It saves time and costs for avoiding several scanning by the real a magnetic resonance imaging device.
Abstract:
The invention features 4-((phenoxyalkyl)thio)-phenoxyacetic acids and analogs, compositions containing them, and methods of using them as PPAR delta modulators to treat or inhibit the progression of, for example, dyslipidemia.
Abstract:
A recommender system determines a probability threshold for an activity-prediction model, and uses the probability threshold to predict whether a user is performing a target activity. To determine the probability threshold, the system computes a set of activity probabilities based on contextual information for a set of historical activities, and based on an activity-prediction model for a target activity. The system then compares a set of probability thresholds with the set of activity probabilities to determine a prediction success rate for each probability threshold. The system computes a utility score for each probability threshold based on the prediction success rates and a utility function, and selects a probability threshold whose utility score is optimal amongst the utility scores of the set of thresholds and greater than or equal to a baseline utility score. The system then assigns the probability threshold to the activity-prediction model.
Abstract:
The present invention relates generally to a head-mounted projection display, and more particularly, but not exclusively to a polarized head-mounted projection display including a light engine and a compact, high-performance projection lens for use with reflective microdisplays.