Abstract:
A tissue ablation apparatus includes a delivery catheter with distal and proximal ends. A handle is attached to the proximal end of the delivery catheter. At least partially positioned in the delivery catheter is an electrode deployment device. The electrode deployment devices includes a plurality of retractable electrodes. Each electrode has a non-deployed state when it is positioned in the delivery catheter. Additionally, each electrode has a distended deployed state when it is advanced out of the delivery catheter distal end. The deployed electrodes define an ablation volume. Each deployed electrode has a first section with a first radius of curvature. The first section is located near the distal end of the delivery catheter. A second section of the deployed electrode extends beyond the first section, ad has a second radius of curvature, or a substantially linear geometry.
Abstract:
Apparatus for creating a controlled pattern of ablation throughout the interior of an organ or body cavity while minimizing thermal damage to collateral tissue includes a microporous balloon mounted on a catheter. The balloon, bearing electrodes embedded in the surface, is inserted into the target body region and inflated, whereupon the electrodes come into contact with the interior of the targeted organ. Because of its microporous nature, fluids for cooling or various therapeutic purposes may pass through the surface of the balloon to the target site. Sensors monitor conditions such as temperature and impedance at the site, providing required feedback for delivery of RF energy for ablation, and administration of cooling and hydrating fluids. A second balloon or other means isolates the treatment area and controls the flow and accumulation of body fluids and treatment fluids minimizing adverse treatment effects from fluid accumulations, and anchoring the catheter in place.
Abstract:
The invention provides an apparatus and system for ablation of body structures or tissue in the region of the rectum. A catheter is inserted into the rectum, and an electrode is disposed thereon for emitting energy. The environment for an ablation region is isolated or otherwise controlled by blocking gas or fluid using a pair of inflatable balloons at upstream and downstream locations. Inflatable balloons also serve to anchor the catheter in place. A plurality of electrodes are disposed on the catheter and at least one such electrode is selected and advanced out of the catheter to penetrate and ablate selected tissue inside the body in the region of the rectum. The electrodes are coupled to sensors to determine control parameters of the body structure or tissue, and which are used by feedback technique to control delivery of energy for ablation or fluids for cooling or hydration. The catheter includes an optical path disposed for coupling to an external view piece, so as to allow medical personnel to view or control positioning of the catheter and operation of the electrodes. The catheter is disposed to deliver flowable substances for aiding in ablation, or for aiding in repair of tissue, such as collagen or another substance for covering lesions or for filling fissures. The flowable substances are delivered using at least one lumen in the catheter, either from at least one hole in the catheter, from an area of the catheter covered by a microporous membrane, or from microporous balloons.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially movable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
An apparatus that reduces a volume of a selected site in an interior of the tongue includes a handpiece means and an electrode means at least partially positioned in the interior of the handpiece means. The electrode means includes an electrode means electromagnetic energy delivery surface and is advance able from the interior of the handpiece means into the interior of the tongue. An electrode means advancement member is coupled to the electrode means and configured to advance the electrode means an advancement distance in the interior of the tongue. The advancement distance is sufficient for the electrode means electromagnetic energy delivery surface to deliver electromagnetic energy to the selected tissue site and reduce a volume of the selected site without damaging a hypoglossal nerve. A cable means is coupled to the electrode means.
Abstract:
A method and apparatus for treatment for body structures, especially internal body structures involving disorders involving unwanted features or other disorders, that does not require relatively invasive surgery, and is not subject to other drawbacks noted with regard to the known art. A relatively minimally invasive catheter is inserted into the body, treatment of the body structures is applied using the catheter, and the unwanted features or disorders are relatively cured using the applied treatments. The applied treatments can include application of energy or substances, including application of energy (such as of radio frequency energy, microwave energy, or laser or other electromagnetic energy) or substances (such as collagen or other bulking, plumping, or shaping agents; saline or other energy-receiving electrolytes; astringents or other debulking, reducing, or shaping agents; antibiotics or other bioactive, chemoactive, or radioactive compounds). More than one applied treatment can be performed, either in conjunction, in parallel, or seriatim, so as to achieve a combined effect more substantial than any one individual such applied treatment.
Abstract:
A cardiac ablation catheter has an energy emitting surface for thermally destroying tissue. The surface normally presents a compact, low profile for introduction into the heart. Once introduced, the energy emitting surface can be significantly enlarged. The enlarged surface emits ablation energy sufficient to create a lesion that is significantly larger in terms of volume and geometry than the surface's initial low profile would provide.
Abstract:
The invention provides a method and system for treatment of body strictures to restore luminal diameter to within a normal diameter range, in which the stricture is dilated to stretch its lumen to a desired diameter, collagen is exuded near to existing tissue of the stricture so as to be absorbed by that tissue or adhere to that tissue, making a collagen-enhanced tissue structure, and energy is emitted to affect the collagen-enhanced tissue, such as by ablation or by hardening. Ablation and hardening may be repeated so as to create a set of layers of hardened collagen in the form of a supporting frame, preferably having a hollow cylindrical shape. Dilation of the stricture is achieved by expanding one or more balloons, or by the pressure of exuded collagen, until the stricture is larger than a normal diameter range. When energy is emitted into the collagen, the stricture contracts back to the normal diameter range, either by ablation of excess tissue or by plating of the stricture wall. The stricture's tissue is also isolated by a set of balloons at either or both ends of the stricture, so as to isolate the stricture and restrict the collagen to the stricture's tissue. The stricture's tissue is also supported by a stent, which is preferably tackwelded onto the stricture's tissue using collagen. Collagen adheres to the stent, which supports the stricture's tissue until the stent is absorbed into that tissue.
Abstract:
A closure device is provided for sealing a puncture in a body vessel. The closure device includes an energy delivery device for delivering energy to tissue adjacent the vessel puncture which enhances an adhesiveness of the tissue to a closure composition precursor. The closure device includes a sealer/dilator for dilating tissue adjacent a vessel puncture, at least one closure composition precursor lumen within the sealer/dilator having an entrance port adjacent the proximal end of the sealer/dilator through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the sealer/dilator through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture, and a plugging catheter for positioning within the vessel puncture, the plugging catheter extending distally from the sealer/dilator and including at least one position sensing mechanism such that the exit port of the closure composition precursor lumen is outside the vessel when the at least one position sensing mechanism is detected to be outside the vessel.
Abstract:
A medical device for the treatment by radio frequency ablation of a target volume in tissue of a prostate comprising an elongate probe member having proximal and distal extremities and having a passage therein extending from the proximal extremity to the distal extremity. The elongate probe member is sized so that it can be introduced into the urethra. At least one guide tube having proximal and distal extremities is mounted in the passage of the elongate probe member for nonlongitudinal movement therein. The at least one guide tube has a lumen extending therethrough from the proximal extremity to the distal extremity. A radio frequency conductive electrode is disposed in the lumen. A handle is coupled to the proximal extremity of the elongate probe member and includes a finger actuatable mechanism secured to the radio frequency electrode for advancing and retracting the radio frequency electrode with respect to the at least one guide tube. The distal extremity of the at least one guide tube has a curved surface for directing the radio frequency electrode sidewise of the longitudinal axis into the tissue of the prostate.