Abstract:
A hybrid VTOL vehicle having an envelope configured to provide hydrostatic buoyancy, a fuselage attached to the envelope and having at least one pair of wings extending from opposing sides thereof to produce dynamic lift through movement, and a thrust generation device on each wing and configured to rotate with each wing about an axis that is lateral to a longitudinal axis of the envelope to provide vertical takeoff or landing capabilities. Ideally, the envelope provides negative hydrostatic lift to enhance low-speed and on-the-ground stability.
Abstract:
Described is an airborne fulfillment center (“AFC”) and the use of unmanned aerial vehicles (“UAV”) to deliver items from the AFC to users. For example, the AFC may be an airship that remains at a high altitude (e.g., 45,000 feet) and UAVs with ordered items may be deployed from the AFC to deliver ordered items to user designated delivery locations. As the UAVs descend, they can navigate horizontally toward a user specified delivery location using little to no power, other than to stabilize the UAV and/or guide the direction of descent. Shuttles (smaller airships) may be used to replenish the AFC with inventory, UAVs, supplies, fuel, etc. Likewise, the shuttles may be utilized to transport workers to and from the AFC.
Abstract:
The present invention is a variable geometry lighter-than-air (LTA) aircraft that is adapted to morph its shape from a symmetric cross-section buoyant craft to an asymmetric lifting body and even to a symmetric zero lift configuration. The basic structure is a semi rigid airship with movable longerons. Movement of the longerons adjusts the camber of the upper and/or lower surfaces to achieve varying shapes of the lifting-body. This transformation changes both the lift and drag characteristics of the craft to alter the flight characteristics. The transformation may be accomplished while the craft is airborne and does not require any ground support equipment.
Abstract:
Lighter-than-air systems, methods, and kits for obtaining aerial images are described. For example, various methods for determining planned ascent, drift, and/or descent of a lighter-than-air system are described. In addition, various structural arrangements of lighter-than-air systems for accomplishing planned ascent, drift, and/or descent and obtaining aerial images are described.
Abstract:
A payload drag structure having a drag disk comprised of a lightweight, flexible material, a tubular section positioned around a periphery of the drag disk, a flexible member positioned within the tubular section, a cross member having a plurality of aims attached about the periphery of the drag disk, wherein one or more arms of the cross member are adapted for attachment to a payload harness, wherein the payload harness is adapted for attachment to arms of the cross member, and wherein a payload may be secured within the payload harness.
Abstract:
An intelligence, surveillance, and reconnaissance system is disclosed including a ground station and one or more aerial vehicles. The aerial vehicles are autonomous systems capable of communicating intelligence data to the ground station and be used as part of a missile delivery package. A plurality of aerial vehicles can be configured to cast a wide net of reconnaissance over a large area on the ground including smaller overlapping reconnaissance areas provided by each of the plurality of the aerial vehicles.
Abstract:
Disclosed are a portable unmanned airship for magnetic survey and a magnetic survey system using the same. The portable unmanned airship includes a fuselage using buoyancy of gas and propelled by motive power of the fuselage itself; an auto-flight unit automatically guiding the fuselage; a magnetometer disposed in the fuselage and measuring magnetic force of a stratum or a surface of the earth; a wireless communication unit transmitting magnetic data obtained by the magnetometer outside; and a control module controlling operations of the auto-flight unit and the magnetometer. With this configuration, it is possible to increase total operation time and a payload capacity of the unmanned airship.
Abstract:
Lighter-than-air systems, methods, and kits for obtaining aerial images are described. For example, various methods for determining planned ascent, drift, and/or descent of a lighter-than-air system are described. In addition, various structural arrangements of lighter-than-air systems for accomplishing planned ascent, drift, and/or descent and obtaining aerial images are described.
Abstract:
A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
Abstract:
Disclosed are a portable unmanned airship for magnetic survey and a magnetic survey system using the same. The portable unmanned airship includes a fuselage using buoyancy of gas and propelled by motive power of the fuselage itself; an auto-flight unit automatically guiding the fuselage; a magnetometer disposed in the fuselage and measuring magnetic force of a stratum or a surface of the earth; a wireless communication unit transmitting magnetic data obtained by the magnetometer outside; and a control module controlling operations of the auto-flight unit and the magnetometer. With this configuration, it is possible to increase total operation time and a payload capacity of the unmanned airship.