Abstract:
The present invention relates to a process and system for thermal waste treatment. The method according to the invention comprises subjecting the waste to thermolysis in a furnace to produce from the waste thermolysis gases and carbon containing solids; purifying the carbon containing solids into purified carbon containing solids which contain pollutants; using part of the thermolysis gases as fuel which is burned to heat the waste in the furnace; burning in a cyclone furnace at least part of the purified carbon containing solids containing pollutants to produce hot gases and to immobilize the pollutants present in the purified carbon containing solids into solids containing the pollutants; and providing the hot gases to an energy recovery device and using the energy recovery device to recover energy from the hot gases.
Abstract:
In accordance with the present invention, a method for supplying solid material such as hot carbonaceous material from a pyrolyzer or reactor to a furnace, is provided comprising providing a screw conveyor for receiving the solid carbonaceous material from the pyrolyzer or reactor preferably from above the conveyor and transporting it along its length to a vaned rotor preferably positioned on the axle of the screw conveyor preferably substantially near the end of the screw conveyor for supplying the carbonaceous material to the furnace.
Abstract:
Method for the thermal cleaning of objects, in particular for removing materials such as plastics and such from metal objects (4), whereby the objects (4) to be cleaned are placed in a room (3) and are heated up to a temperature at which the materials to be removed pyrolyze, characterized in that the temperature of the objects (4) to be cleaned is controlled by means of a temperature sensor (6) which is situated in a measuring space (7), in particular a receiver (9) placed under the workpieces, which also serves to collect the melted plastics.
Abstract:
A material processing apparatus includes a casing having outer and inner spaced walls forming an airtight vessel inside of the inner walls and a channel between the outer and inner walls surrounding the vessel for containing a flow of coolant fluid. The vessel contains a first chamber having an inlet and a second chamber connected in communication with the first chamber and having an outlet. The first chamber receives materials through its inlet. The materials are pyrolyzed in the first chamber. The second chamber receives the pyrolyzed materials from the first chamber. The pyrolyzed materials are oxidized in the second chamber and then discharged therefrom. The vessel defined by the casing is separated into first and second units. The first chamber of the vessel for pyrolyzing materials is disposed in the first unit. The second chamber of the vessel has primary and secondary sections for oxidizing materials in two successive stages. The first chamber and the primary section of the second chamber are disposed in the first unit, whereas the secondary section of the second chamber is disposed in the second unit.
Abstract:
A method and apparatus for the removal of hazardous and waste materials of low heat content, for example, refuse, by means of combustion wherein the combustion process is carried out in a furnace by the presence of added hot combustion air at a temperature sufficient so that the combustion and/or flue gas temperatures are at least 1250.degree. C. In a preferred embodiment of the invention, the combustion process is combined with a process for the production of cement clinker and carried out parallel to the same, wherein air at about 800.degree. C. is branched off for combustion of the hazardous substances from the cooler air of the cement clinker installation and introduced into the furnace. The hot flue gas of the combustion in the furnace is directed into the cement clinker installation. The invention further contemplates that calcium-containing carbonate carriers can be added to the refuse.
Abstract:
Municipal waste is converted into high energy fuel gas by pyrolyzing same in a pyrolysis reaction zone, the heat energy required for such endothermic pyrolysis reaction being transferred from an exothermic reaction zone. Both reaction zones comprise a bed of fluidized inert solids, and the heat of pyrolysis is transferred by circulating therebetween the fluidized inert solids.
Abstract:
A thermochemical system & method may be configured to convert an organic feedstock to various products. A thermochemical system may include a solid material feed module, a reactor module, an afterburner module, and a solid product finishing module. The various operational parameters (temperature, pressure, etc.) of the various modules may vary depending on the desired products. The product streams may be gaseous, vaporous, liquid, and/or solid.
Abstract:
A thermochemical system & method may be configured to convert an organic feedstock to various products. A thermochemical system may include a solid material feed module, a reactor module, an afterburner module, and a solid product finishing module. The various operational parameters (temperature, pressure, etc.) of the various modules may vary depending on the desired products. The product streams may be gaseous, vaporous, liquid, and/or solid.
Abstract:
A high-efficiency clean burning method of a macromolecular substance, wherein the macromolecular substance comprises biomass and solid organic waste; the method comprises the following steps: generating a first gaseous substance and a red-hot carbon residue layer from biomass carbon residue or charcoal or coke or a mixture thereof by anoxic combustion; leading the heat generated by anoxic combustion to the macromolecular substance, preheating and drying the macromolecular substance and carrying out pyrolysis gasification, so as to generate a second gaseous substance; taking red-hot carbon residue as a pyrolysis catalyst, leading the second gaseous substance to the red-hot carbon residue layer to carry out oxygen catalytic cracking, so as to generate a third gaseous substance; leading the third gaseous substance and the first gaseous substance to an oxygen-enriched combustion zone in a heat preservation manner to carry out oxygen-enriched combustion, so as to achieve substantial complete combustion of all gasification products, wherein a tar wastewater is not generated, and pollution of smoke tar is not generated. A device capable of achieving the method comprises four categories of a plurality of devices. Thus, zero emission of “dioxin” can be achieved when the device is applied to waste incineration disposal.
Abstract:
Char-handling processes for controlling overall heat balance, ash accumulation, and afterburn in a reheater are provided. Carbonaceous biomass feedstock is pyrolyzed using a heat transfer medium forming pyrolysis products and a spent heat transfer medium. The spent heat transfer medium is separated into segregated char and char-depleted spent heat transfer medium. The char-depleted spent heat transfer medium is introduced into a dense bed of heat transfer medium fluidized by a stream of oxygen-containing regeneration gas. All or a portion of the segregated char is combusted in the dense bed using the stream of oxygen-containing regeneration gas. A portion of the segregated char may be exported out of the pyrolysis system to control the overall heat balance and ash accumulation.