摘要:
A method for eliminating the radiation-induced off-state current in the P-channel ultrathin silicon-on-sapphire transistor, by providing a retrograde dopant concentration profile that has the effect of moving the Fermi level at the back of the device away from that part of the bandgap where the interface states are located. When the Fermi level does not swing through this area in any region of operation of the device, subthreshold stretchout of the I-V curves does not occur.
摘要:
A semiconductor chip includes a semiconductor substrate having a rectifying contact diffusion and a non-rectifying contact diffusion. A halo diffusion is adjacent the rectifying contact diffusion and no halo diffusion is adjacent the non-rectifying contact diffusion. The rectifying contact diffusion can be a source/drain diffusion of an FET to improve resistance to punch-through. The non-rectifying contact diffusion may be an FET body contact, a lateral diode contact, or a resistor or capacitor contact. Avoiding a halo for non-rectifying contacts reduces series resistance and improves device characteristics. In another embodiment on a chip having devices with halos adjacent diffusions, no halo diffusion is adjacent a rectifying contact diffusion of a lateral diode, significantly improving ideality of the diode and increasing breakdown voltage.
摘要:
In order to realize a higher reliability TFT and a high reliability semiconductor device, an NTFT of the present invention has a channel forming region, n-type first, second, and third impurity regions in a semiconductor layer. The second impurity region is a low concentration impurity region that overlaps a tapered potion of a gate electrode with a gate insulating film interposed therebetween, and the impurity concentration of the second impurity region increases gradually from the channel forming region to the first impurity region. And, the third impurity region is a low concentration impurity region that does not overlap the gate electrode. Moreover, a plurality of NTFTs on the same substrate should have different second impurity region lengths, respectively, according to difference of the operating voltages. That is, when the operating voltage of the second TFT is higher than the operating voltage of the first TFT, the length of the second impurity region is longer on the second TFT than on the first TFT.
摘要:
A lateral semiconductor element (10) in thin-film SOI technology comprises an insulator layer (14) which rests on a substrate (12) and is buried under a thin silicon film (16), on top of which the source, or anode, contact (18) and the drain, or cathode, contact (22b) are mounted. The anode contact (18) and the cathode contact (22) each lie over separate shield regions (28,30) within substrate (12), with the anode contact (18) being electrically connected with substrate (12).
摘要:
The present invention relates to a silicon on insulator (nullSOInull) structure having a low defect density device layer and, optionally, a handle wafer having improved gettering capabilities. The device layer comprises a central axis, a circumferential edge, a radius extending from the central axis to the circumferential edge, and a first axially symmetric region which is substantially free of agglomerated intrinsic point defects. Additionally, the present invention is directed to such a SOI structure which has a Czochralski single crystal silicon handle wafer which is capable of forming an ideal, non-uniform depth distribution of oxygen precipitates upon being subjected to the heat treatment cycles of essentially any arbitrary electronic device manufacturing process.
摘要:
A silicon-on-insulator (SOI) integrated circuit and a method of fabricating the SOI integrated circuit are provided. A plurality of transistor active regions and at least one body contact active region are formed on an SOI substrate. A semiconductor residue layer, which is thinner than the transistor active regions and the body contact active region, is disposed between the transistor active regions and the body contact active region. The transistor active regions, the body contact active region and the semiconductor residue layer are disposed on a buried insulating layer of the SOI substrate. The semiconductor residue layer is covered with a partial trench isolation layer. A bar-shaped full trench isolation layer is interposed between the adjacent transistor active regions. The full trench isolation layer is in contact with sidewalls of the transistor active regions adjacent thereto and is in contact with the buried insulating layer between the adjacent transistor active regions. An insulated gate pattern crosses over the respective transistor active regions. The insulated gate pattern is disposed to be parallel with the full trench isolation layer.
摘要:
In a combined isolation oxide film (BT1), a part closer to a gate electrode (GT13) reaches a buried oxide film (2) through an SOI layer (3) while a part closer to another gate electrode (GT12) has a sectional shape provided with a well region on its lower portion. The shape of an edge portion of the combined isolation oxide film (BT1) is in the form of a bird's beak in a LOCOS isolation oxide film. Consequently, the thicknesses of portions defining edge portions of the gate oxide films (GO12, GO13) are locally increased. Thus provided are a semiconductor device including a MOS transistor having a gate oxide film prevented from dielectric breakdown without increasing its thickness and a method of manufacturing the same.
摘要:
In manufacturing a semiconductor device, static electricity is generated while contact holes are formed in an interlayer insulating film by dry etching. Damage to a pixel region or a driving circuit region due to travel of the static electricity generated is prevented. Gate signal lines are spaced apart from each other above a crystalline semiconductor film. Therefore a first protective circuit is not electrically connected when contact holes are opened in an interlayer insulating film. The static electricity generated during dry etching for opening the contact holes moves from the gate signal line, damages a gate insulating film, passes the crystalline semiconductor film, and again damages the gate insulating film before it reaches the gate signal line. As the static electricity generated during the dry etching damages the first protective circuit. the energy of the static electricity is reduced until it loses the capacity of damaging a driving circuit TFT. The driving circuit TFT is thus prevented from suffering electrostatic discharge damage.
摘要:
A semiconductor device and a signal processing system having a metal oxide semiconductor (MOS) transistor with a silicon-on-insulator (SOI) structure are provided. The semiconductor device and the signal processing system include a main MOS transistor and an assistance MOS transistor. The main MOS transistor includes a first gate interconnection for receiving an external signal, first source/drain regions of a first conductivity type, and a body. The assistance MOS transistor includes a second gate interconnection and second source/drain regions of a second conductivity type opposite to the first conductivity type. The assistance MOS transistor selectively floats or grounds the body according to the external signal. The first gate interconnection and the second gate interconnection are electrically connected to each other by an interconnection layer.
摘要:
The semiconductor substrate body-substrate contact structure for a SOI device includes an SOI substrate having a semiconductor substrate, a buried insulating film formed on an upper surface of the semiconductor substrate, and a semiconductor body layer formed on an upper surface of the buried insulating film. The SOI substrate includes a trench exposing an upper surface of the semiconductor substrate, and semiconductive side wall spacers are formed on side walls of the trench. A device isolation insulating film is formed in the trench.