Abstract:
Systems and methods for improving the performance of dilution refrigeration systems are described. Electrostatic cryogenic cold traps employed in the helium circuit of a dilution refrigerator improve the removal efficiency of contaminants from the helium circuit. An ionization source ionizes at least a portion of a refrigerant that includes helium and number of contaminants. The ionized refrigerant passes through an electrostatic cryogenic cold trap that includes a number of surfaces at one or more temperatures along at least a portion of the fluid passage between the cold trap inlet and the cold trap outlet. A high voltage source coupled to the surfaces to causes a first plurality of surfaces to function as electrodes at a first potential and a second plurality of surfaces to function as electrodes at a second potential. As ionized contaminants release their charge on the electrodes, the contaminants bond to the electrodes.
Abstract:
Achieving orthogonal control of non-orthogonal qubit parameters of a logical qubit allows for increasing the length of a qubit chain thereby increasing the effective connectivity of the qubit chain. A hybrid qubit is formed by communicatively coupling a dedicated second qubit to a first qubit. By tuning a programmable parameter of the second qubit of a hybrid qubit, an effective programmable parameter of the hybrid qubit is adjusted without affecting another effective programmable parameter of the hybrid qubit thereby achieving orthogonal control of otherwise non-orthogonal qubit parameters. The length of the logical qubit may thus be increased by communicatively coupling a plurality of such hybrid qubits together.
Abstract:
Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
Abstract:
An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
Abstract:
Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
Abstract:
Techniques for improving the performance of a quantum processor are described. Some techniques employ reducing intrinsic/control errors by using quantum processor-wide problems specifically crafted to reveal errors so that corrections may be applied. Corrections may be applied to physical qubits, logical qubits, and couplers so that problems may be solved using quantum processors with greater accuracy.
Abstract:
Systems and methods allow formulation of embeddings of problems via targeted hardware (e.g., particular quantum processor). In a first stage, sets of connected subgraphs are successively generated, each set including a respective subgraph for each decision variable in the problem graph, adjacent decisions variables in the problem graph mapped to respective vertices in the hardware graph, the respective vertices which are connected by at least one respective edge in the hardware graph. In a second stage, the connected subgraphs are refined such that no vertex represents more than a single decision variable.
Abstract:
Techniques for improving the performance of a quantum processor are described. Some techniques employ improving the processor topology through design and fabrication, reducing intrinsic/control errors, reducing thermally-assisted errors and methods of encoding problems in the quantum processor for error correction.
Abstract:
Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
Abstract:
Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.