Abstract:
Example embodiments may provide resistive random access memory devices and/or methods of manufacturing resistive random access memory devices. Example embodiment resistive random access memory devices may include a switching device and/or a storage node connected to the switching device. The storage node may include a stack structure including a plurality of resistance change layers separated from one another and first and second electrodes each on a side wall of the stack structure. The resistance change layers may be connected to the first and the second electrodes in parallel and/or may have different switching voltages from each other.
Abstract:
Provided are a resistive random access memory device and a method of manufacturing the same. The resistive random access memory device includes a switching device and a storage node connected to the switching device, and the storage node includes a first electrode and a second electrode and a resistance change layer formed of Cu2-XO between the first electrode and the second electrode.
Abstract:
An apparatus, a method, and a computer readable recording medium thereof to update filter tap coefficients of an equalizer include a defect signal detection unit and a coefficient updating unit. The defect signal detection unit receives a sampled input signal reflected from an optical disc and/or a track jump signal, detects whether the input signal and/or the track jump signal are defective, and outputs an update stop signal indicative thereof. The coefficient updating unit stops the updating of the filter tap coefficients in response to the update stop signal and outputs current filter tap coefficients.
Abstract:
Provided are a nonvolatile memory device, a layer deposition apparatus and a method of fabricating a nonvolatile memory device using the same. The apparatus may include a chamber capable of holding a substrate, a particle-discharging target discharging particles toward the substrate, and a first ion beam gun accelerating a first plurality of ions and irradiating the accelerated ions toward the substrate. The method of fabricating a nonvolatile memory device may include discharging particles from a target toward a substrate, accelerating and irradiating a first plurality of ions toward the substrate, forming a reaction product by reacting the discharged particles and the accelerated and irradiated first plurality of ions, and forming a data storage layer having a deposited layer on the substrate. The nonvolatile memory device may include a data storage layer including a transition metal oxide layer formed by reacting discharged transition metal particles and accelerated and irradiated oxygen ions.
Abstract:
An optical disc reproducing apparatus includes an A/D converter; an asymmetry compensator for detecting 4T sampling signals; a phase locked loop including a frequency detector that counts and detects run-length signals from the digital signals and compensates frequency errors of the digital signals; a binary module including a Viterbi decoder, a slicer, and a minimum T compensator that compensates the digital signal with a minimum signal having a unit cycle; an equalizer; an adaptive level error detector detecting a base level of the Viterbi decoder from both an input signal into the equalizer and an output signal from the Viterbi decoder, and computing a filtering coefficient of the equalizer from the base level; and a signal quality measurer measuring a jitter or an SbER of the digital signal.
Abstract:
In a semiconductor memory device and a method of fabricating the same, a semiconductor memory device having a transistor and a data storing portion includes a heating portion interposed between the transistor and the data storing portion and a metal interconnection layer connected to the data storing portion, wherein the data storing portion includes a chalcogenide material layer, which undergoes a phase change due to a heating of the heating portion, for storing data therein.
Abstract:
Provided are methods for manufacturing silicon rich oxide (SRO) layers useful in the fabrication of semiconductor devices, for example, non-volatile memory devices, and methods for fabricating semiconductor devices incorporating such SRO layers. The methods include absorbing a first silicon source gas onto the substrate, oxidizing the first absorbed layer to form a silicon oxide layer, absorbing a second silicon source gas onto the substrate and reducing the second absorbed layer to form a silicon layer. The combination of the silicon oxide layer(s) and the silicon layer(s) comprise, in turn, a composite SRO layer. These manufacturing methods facilitate control of the oxygen concentration in the SRO, the relative thicknesses of the silicon oxide and silicon layers, and provides improved step coverage, thus allowing the manufacturing of high quality semiconductor devices.
Abstract:
A storage node, a method of fabricating the same, a semiconductor memory device and a method of fabricating the same is provided. The method of fabricating a storage node may include forming a lower electrode, forming an irradiated data storage layer and forming an upper electrode.
Abstract:
A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode. The method includes: forming a gate structure and an active region on a semiconductor substrate; forming an interlayer dielectric film on the resultant semiconductor substrate; forming a plug in the interlayer dielectric film to electrically connect with the active region; forming a mold oxidation layer on the plug and the interlayer dielectric film; patterning the mold oxidation layer with a predetermined pattern and forming a lower electrode of material containing aluminum on the plug; and sequentially forming a dielectric layer and an upper electrode on the lower electrode.
Abstract:
Methods of fabricating a lanthanum oxide layer, and methods of fabricating a MOSFET and/or a capacitor especially adapted for semiconductor applications using such a lanthanum oxide layer are disclosed. The methods include a preliminary step of disposing a semiconductor substrate into a chamber. Tris(bis(trimethylsilyl)amino)Lanthanum as a lanthanum precursor is then injected into the chamber such that the lanthanum precursor is chemisorbed on the semiconductor substrate. Then, after carrying out a first purge of the chamber, at least one oxidizer is injected into the chamber such that the oxidizer is chemisorbed with the lanthanum precursor on the semiconductor substrate. Then, the chamber is purged a second time. The described steps of injecting the lanthanum precursor into the chamber, first-purging the chamber, injecting an oxidizer into the chamber, and second-purging the chamber may be sequentially and repeatedly performed to form a lanthanum oxide layer of a desired thickness having enhanced semiconductor characteristics.