Abstract:
An exemplary method for forming stacked via-holes in a multilayer printed circuit board includes the steps of: providing a base circuit board; attaching a first copper-coated-substrate having a first substrate and a first copper layer thereon and a second copper-coated-substrate having a second substrate and a second copper layer thereon onto the base circuit board in a manner such that; forming at least one first window in the second copper layer, making at least one first hole in the second substrate through the at least one first window, forming at least one second window in the first copper layer through the at least one first hole, and making at least one second hole in the first substrate through the at least one second window, thus forming at least one part-finished stacked via-hole; and plating the at least one part-finished stacked via-hole thereby forming at least one stacked via-hole.
Abstract:
A semiconductor structure includes a semiconductor substrate having a top surface; a gate stack on the semiconductor substrate; and a stressor in the semiconductor substrate and adjacent the gate stack. The stressor comprises at least a first portion with a first top surface lower than the top surface of the semiconductor substrate.
Abstract:
A semiconductor device comprises a semiconductor mesa overlying a dielectric layer, a gate stack formed overlying the semiconductor mesa, and an isolation spacer formed surrounding the semiconductor mesa and filling any undercut region at edges of the semiconductor mesa.
Abstract:
The present inventions relates to a method for manufacturing a multilayer FPCB. The method includes the steps of providing three copper clad laminates and two binder layers, each of the copper clad laminates includes a dielectric layer and at least one patterned conductive layer formed on the dielectric layer; stacking the copper clad laminates and the binder layers alternately one on another; aligning the copper clad laminates and the binder layers; and compressing the copper clad laminates and the binder layers together thereby obtaining a multilayer flexible printed circuit board.
Abstract:
An apparatus (100) for spraying an etchant solution on a preformed printed circuit board (30) includes a number of feed pipes (40) for supplying the etchant solution and a number of nozzles (45) mounted on the feed pipes. Each of the feed pipes has a middle portion (402) and two end portions (401). The middle portions of the feed pipes are located on a first plane and the end portions of the feed pipes are located on a second plane parallel to the first plane. The number of nozzles are mounted on the middle portion and the two end portions of each feed pipe. The number of nozzles are in fluid communication with the feed pipes.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
Disclosed is a method of manufacturing microelectronic devices including forming a silicon substrate with first and second wells of different dopant characteristics, forming a first strained silicon-germanium-carbon layer of a first formulation proximate to the first well, and forming a second strained silicon-germanium-carbon layer of a second formulation distinct from the first formulation proximate to the second well. Capping and insulating layers, gate structures, spacers, and sources and drains are then formed, thereby creating a CMOS device with independently strained channels.
Abstract:
The channel of a MOSFET is selectively stressed by selectively stressing the silicide layers on the gate electrode and the source/drain. Stress in the silicide layer is selectively produced by orienting the larger dimensions of the silicide grains in a first direction and the smaller dimensions in a second, perpendicular direction, with one of the directions being parallel to the direction of carrier movement in the channel and the other direction being perpendicular thereto.
Abstract:
Disclosed is a method of manufacturing microelectronic devices including forming a silicon substrate with first and second wells of different dopant characteristics, forming a first strained silicon-germanium-carbon layer of a first formulation proximate to the first well, and forming a second strained silicon-germanium-carbon layer of a second formulation distinct from the first formulation proximate to the second well. Capping and insulating layers, gate structures, spacers, and sources and drains are then formed, thereby creating a CMOS device with independently strained channels.
Abstract:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.