Abstract:
Method for forming FinFET source/drain regions with reduced field oxide loss and the resulting devices are disclosed. Embodiments include forming silicon fins separated by a field oxide on a silicon substrate; recessing the field oxide to reveal an upper portion of the silicon fins; forming a spacer layer conformally over the upper portion of the fins and over the field oxide; filling spaces between the fins with a material having high selectivity with the spacer layer; recessing the material; removing the spacer layer above an upper surface of the material; removing the material; recessing the upper portion of the fins; and epitaxially growing source/drain regions on the recessed fins.
Abstract:
A process for fabrication of semiconductor devices, particularly fin-shaped Field Effect Transistors (FinFETs), having a low contact horizontal resistance and a resulting device are provided. Embodiments include: providing a substrate having source and drain regions separated by a gate region; forming a gate electrode having a first length on the gate region; forming an epitaxy layer on the source and drain regions; forming a contact layer having a second length, longer than the first length, at least partially on the epitaxy layer; and forming an oxide layer on top and side surfaces of the contact layer for at least the first length.
Abstract:
Embodiments of the present invention provide improved metal-insulator-metal (MIM) capacitors. In embodiments, series resistance is reduced by forming a via underneath the bottom plate of a MIM capacitor, leading to a metallization layer or intermediate metal sublayer. In embodiments, the MIM capacitor is formed with a corrugated shape to increase the plate surface area, allowing a thicker dielectric to be used, thereby mitigating leakage issues.
Abstract:
One method includes forming trenches that define a fin structure including a first layer of a first semiconductor material and a second layer of a second semiconductor material positioned above a substrate, performing at least one etching process that exposes opposing end surfaces of the first and second layers, performing at least one recess etching process that removes end portions of the first layer and defines a cavity on opposite ends of the first layer, performing an epitaxial deposition process that fills each of the cavities with a support structure including a third semiconductor material, and performing an etching process to selectively remove remaining portions of the recessed first layer relative to the second layer and the support structures, the end portions of the second layer and the support structures defining pillars on opposite ends of the fin structure.
Abstract:
Embodiments of the present invention provide improved metal-insulator-metal (MIM) capacitors. In embodiments, series resistance is reduced by forming a via underneath the bottom plate of a MIM capacitor, leading to a metallization layer or intermediate metal sublayer. In embodiments, the MIM capacitor is formed with a corrugated shape to increase the plate surface area, allowing a thicker dielectric to be used, thereby mitigating leakage issues.
Abstract:
Approaches for spacer chamfering in a replacement metal gate (RMG) device are provided. Specifically, a semiconductor device is provided with a set of fins formed from a substrate; a silicon-based layer conformally deposited over the set of fins; an etch-stop layer (e.g., titanium nitride (TiN)) formed over the silicon-based layer, the etch-stop layer being selective to at least one of: silicon, oxide, and nitride; a set of RMG structures formed over the substrate; a set of spacers formed along each of the set of RMG structures, wherein a vertical layer of material from each of the set of spacers is removed selective to the etch-stop layer. By chamfering each sidewall spacer, a wider area for subsequent work-function (WF) metal deposition is provided. Meanwhile, each transistor channel region is covered by the etch-stop layer (e.g., TiN), which maintains the original gate critical dimension during reactive ion etching.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin protection layer around a fin, forming a sacrificial gate electrode above a section of the fin protection layer, forming at least one sidewall spacer adjacent the sacrificial gate electrode, removing the sacrificial gate electrode to define a gate cavity that exposes a portion of the fin protection layer, oxidizing at least the exposed portion of the fin protection layer to thereby form an oxidized portion of the fin protection layer, and removing the oxidized portion of the fin protection layer so as to thereby expose a surface of the fin within the gate cavity.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a scaled gate contact and source/drain cap and methods of manufacture. The structure includes: a gate structure comprising an active region; source and drain contacts adjacent to the gate structure; a capping material over the source and drain contacts; a gate contact formed directly above the active region of the gate structure and over the capping material; a U-shape dielectric material around the gate contact, above the source and drain contacts; and a contact in direct electrical contact to the source and drain contacts.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to middle of line structures and methods of manufacture. The structure includes: a plurality of gate structures; source and drain regions adjacent to respective gate structures of the plurality of gate structures; metallization features contacting selected source and drain regions; and recessed metallization features contacting other selected source and drain regions.
Abstract:
Processes form integrated circuit apparatuses that include parallel fins, wherein the fins are patterned in a first direction. Parallel gate structures intersect the fins in a second direction perpendicular to the first direction, wherein the gate structures have a lower portion adjacent to the fins and an upper portion distal to the fins. Source/drain structures are positioned on the fins between the gate structures. Source/drain contacts are positioned on the source/drain structures and multiple insulator layers are positioned between the gate structures and the source/drain contacts. Additional upper sidewall spacers are positioned between the upper portion of the gate structures and the multiple insulator layers.