Abstract:
A vehicle seat comprising a seat cushion having a seat cushion main body portion and seat cushion side portions that are disposed on both sides in a seat width direction of the seat cushion main body portion; a seat back having a seat back main body portion and seat back side portions that are disposed on both sides in the seat width direction of the seat back main body portion; and a varying mechanism supporting at least one of the seat cushion main body portion and the seat back main body portion, and varying the position of the seat cushion main body portion in a seat upward and downward direction relative to the seat cushion side portions, and/or varying the position of the seat back main body portion in a seat frontward and rearward direction relative to the seat back side portions.
Abstract:
An outer casing for a control cable 10 has an inner tube 12,which includes a crystalline resin, and an outer tube 14, which includes an outer resin layer 16 covering the outer periphery of the inner tube and, in the outer resin layer, includes plural metal wires 18 buried in parallel with the axial direction of the inner tube and at equal intervals in the circumferential direction of the inner tube.
Abstract:
A connection terminal for a power module, includes a conductive wire that is wound to form the connection terminal. The conductive wire includes an insertion part, at least a part of which is closely wound and to be inserted into a hollow part of a holding member of the power module, and includes a press-fitting part having a diameter larger than a diameter of the hollow part, a rough winding part in which the wire is wound at a predetermined interval, and a contact part for coming into contact with an external circuit, the contact pert being provided at an end part of the rough winding part on a side different from the end part on a side of the insertion part.
Abstract:
A conductive member includes: a conductive member main body portion that has Vickers hardness equal to or greater than 100Hv and is made of copper or a copper alloy; and a film layer that is formed on an end face of the conductive member main body portion and is made of aluminum or an aluminum alloy. The film layer is formed by accelerating a powder material of aluminum or an aluminum alloy together with a gas heated to a temperature lower than a melting point of the powder material, spraying the powder material still remaining in a solid phase onto an end face of the conductive member main body portion, and causing the powder material to be deposited thereon.
Abstract:
A space transformer includes: a ceramic substrate that contains enstatite and boron nitride as components; a through hole running through in a thickness direction with respect to a sintered body in which the boron nitride is oriented in one direction; conductive material provided inside the through hole; and a wiring pattern including a plurality of electrodes provided on each of two principal surfaces, wherein a wiring pitch in the wiring pattern on one principal surface is different from a wiring pitch in the wiring pattern on the other principal surface.
Abstract:
A flexure chain blank sheet includes frame units. Each frame unit includes a frame portion, and flexure elements. The flexure element includes a distal end portion, and an extending portion. The frame portion includes a pair of lengthwise frames and a pair of lateral frames. The first lateral frame connects between tail portions of the flexure elements. The second lateral frame is formed of a distal end linking portion which is constituted by connecting between respective adjacent extending portions. The distal end linking portion includes first cut-off portions to be cut along a longitudinal direction between the adjacent extending portions, and second cut-off portions to be cut along a width direction between the distal end portion and the extending portion.
Abstract:
A method manufactures a head suspension by laser-welding the flexure to the load beam at a first welding spot so that a tongue is pressed against a convex portion under predetermined load. The method includes step of forming, before joining the flexure and load beam together, at least one positioning reference hole in each of the flexure and load beam within a circular range that is defined around the first welding spot with a radius equal to a distance between the first welding spot and the projection, laying the flexure and load beam one on another, inserting reference pin into the reference holes, and laser-welding the flexure and load beam to each other at the first welding spot.
Abstract:
A tail pad portion is provided in a flexure tail including a metal base and a conductive circuit portion. Tail terminals are arranged in the tail pad portion. The metal base is made of stainless steel, and includes a frame structure having a first frame and a second frame. An opening is formed between the first and second frames. The tail terminals are arranged parallel to each other between the first and second frames. A bridge portion is provided between the first and second frames. The bridge portion is constituted of at least one conductive bridge member, and arranged at a position which does not overlap the tail terminals. One end of the bridge member is connected to the first frame, and the other end of the bridge member is connected to the second frame.
Abstract:
A tail pad portion is provided in a flexure tail including a metal base and a conductive circuit portion. Tail terminals are arranged in the tail pad portion. The metal base is made of stainless steel, and includes a frame structure having a first frame and a second frame. An opening is formed between the first frame and the second frame. The tail terminals are arranged parallel to each other between the first frame and the second frame. A bridge portion is formed between the first frame and the second frame. The bridge portion includes at least one bridge element which is a part of the metal base. The bridge element is arranged at a position which overlaps at least one of the tail terminals in the thickness direction.
Abstract:
A tail pad portion is provided in a flexure tail including a metal base and a conductive circuit portion. Tail terminals are arranged in the tail pad portion. The metal base is made of stainless steel, and includes a frame structure having a first frame and a second frame. An opening is formed between the first frame and the second frame. The tail terminals are arranged parallel to each other between the first frame and the second frame. A bridge portion is formed between the first frame and the second frame. The bridge portion includes at least one bridge element which is a part of the metal base. The at least one bridge element is arranged at a position which does not overlap the tail terminals in the thickness direction.