Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
One method disclosed includes, among other things, forming a gate structure above an active region of a semiconductor substrate, wherein a first portion of the gate structure is positioned above the active region and second portions of the gate structure are positioned above an isolation region formed in the substrate, forming a sidewall spacer adjacent opposite sides of the first portion of the gate structure so as to define first and second continuous epi formation trenches comprised of the spacer that extend for less than the axial length of the gate structure, and forming an epi semiconductor material on the active region within each of the first and second continuous epi formation trenches.
Abstract:
An improved field effect transistor and method of fabrication are disclosed. A barrier layer stack is formed in the base and sidewalls of a gate cavity. The barrier layer stack has a first metal layer and a second metal layer. A gate electrode metal is deposited in the cavity. The barrier layer stack is thinned or removed on the sidewalls of the gate cavity, to more precisely control the voltage threshold of the field effect transistor.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first high-k protection layer on the source/drain regions and adjacent the sidewall spacers of a transistor device, removing a sacrificial gate structure positioned between the sidewall spacers so as to thereby define a replacement gate cavity, forming a replacement gate structure in the replacement gate cavity, forming a second high-k protection layer above an upper surface of the spacers, above an upper surface of the replacement gate structure and above the first high-k protection layer, and removing portions of the second high-k protection layer positioned above the first high-k protection layer.
Abstract:
A method, apparatus, and manufacturing system are disclosed herein for a vertical field effect transistor patterned in a self-aligned process. A plurality of fins is formed. A gate structure is formed on at least a first side and a second side of a lower portion of each fin. A spacer is formed on at least a first side and a second side of an upper portion of each fin. At least one layer is formed above the substrate and between the fins. An opening is formed in the at least one layer between the fins by an etching process. The spacer protects the gate structure during the etching process.
Abstract:
A method, apparatus, and manufacturing system are disclosed herein for a vertical field effect transistor patterned in a self-aligned process. A plurality of fins is formed. A gate structure is formed on at least a first side and a second side of a lower portion of each fin. A spacer is formed on at least a first side and a second side of an upper portion of each fin. At least one layer is formed above the substrate and between the fins. An opening is formed in the at least one layer between the fins by an etching process. The spacer protects the gate structure during the etching process.
Abstract:
A device including a substrate and at least one fin formed over the substrate. At least one transistor is integrated with the fin at a top portion of the fin. The transistor includes an active region comprising a source, a drain and a channel region between the source and drain. A gate structure is formed over the channel region, and the gate structure includes a HKMG and air-gap spacers formed on opposite sidewalls of the HKMG. Each of the air-gap spacers includes an air gap that is formed along a trench silicide region, and the air-gap is formed below a top of the HKMG. A gate contact is formed over the active region.
Abstract:
Processes form integrated circuit apparatuses that include parallel fins, wherein the fins are patterned in a first direction. Parallel gate structures intersect the fins in a second direction perpendicular to the first direction, wherein the gate structures have a lower portion adjacent to the fins and an upper portion distal to the fins. Source/drain structures are positioned on the fins between the gate structures. Source/drain contacts are positioned on the source/drain structures and multiple insulator layers are positioned between the gate structures and the source/drain contacts. Additional upper sidewall spacers are positioned between the upper portion of the gate structures and the multiple insulator layers.
Abstract:
Methods of forming a field-effect transistor and structures for a field effect-transistor. A sidewall spacer is formed adjacent to a sidewall of a gate structure of the field-effect transistor and a dielectric cap is formed over the gate structure and the sidewall spacer. A cut is formed that extends through the dielectric cap, the gate structure, and the sidewall spacer. After forming the cut, the sidewall spacer is removed from beneath the dielectric cap to define a cavity, and a dielectric material is deposited in the cut and in the cavity. The dielectric material encapsulates a portion of the cavity to define an airgap spacer.