Abstract:
A direct current voltage conversion device includes a buck converter receiving a direct current input voltage and outputting a direct current first voltage according to a first control signal, a series resonant converter outputting an alternating current second voltage according to a second control signal and a third control signal, a transformer that receives the alternating current second voltage, a rectifier, and an output capacitor electrically coupled with the rectifier. The rectifier generates a direct current output voltage according to a fourth control signal and a fifth control signal, which is outputted across the output capacitor.
Abstract:
A liquid crystal display (LCD) system includes an LCD device and an alternating current (AC) adapter. The LCD device includes a video processing module and a light emitting diode (LED) backlight module. The AC adapter includes a backlight driving module and an AC-to-DC (direct current) converting module. The backlight driving module generates a backlight driving signal, and outputs the backlight driving signal to drive the LED backlight module of the LCD device. The AC-to-DC converting module is adapted to convert an AC line voltage into first and second DC voltages, and outputs the first and second DC voltages to power the video processing module of the LCD device and the backlight driving module, respectively.
Abstract:
An LED device includes a substrate, a number (N) of flip-chip LED die(s), an electrical conductive structure and a lens structure. The substrate has upper and lower surfaces and is formed with multiple through holes. A ratio of LED die(s) surface area to an area of the upper surface of the substrate ranges from 22.7% to 76.2%. The electrical conductive structure includes a number (N) of upper bonding pad assembly (assemblies), a number (N+1) of lower bonding pads and a number (2N) of interconnectors. Each upper bonding pad assembly includes two upper bonding pads electrically connected to the LED die(s). The interconnectors are disposed in the through holes and interconnect the upper and lower bonding pads. The lens structure covers the LED die(s).
Abstract:
A portable memory storage device includes a housing and plural memory modules insertable into the housing. Each memory module includes a module shell, which has a module body and a positioning mechanism, and a memory member connected to the module shell. The positioning mechanism is disposed on the module body and is exposed from the housing. The positioning mechanism of a first memory module abuts against a front opening-defining edge, and the positioning mechanism of a last memory module abuts against a rear opening-defining edge, such that the plural memory modules are positioned in the housing. The memory module may be removed from the housing when the positioning mechanism is depressed.
Abstract:
A light emitting diode package includes a metallic frame, and an LED chip disposed on the metallic frame. The metallic frame includes first and second metal plates arranged side by side with a space therebetween, and two support arms extending integrally and respectively from two opposite ends of the second metal plate to a level higher than the second top surface and that further extend toward the first metal plate at a level higher than the first top surface crossing the space. The support arms are not in contact with the first metal plate. An encapsulant encapsulates the metallic frame and the LED chip. At least a region of the encapsulant that covers the LED chip is transparent.
Abstract:
A housing includes a housing body defining a receiving space, having a lateral opening, and including two fixed plates one of which is formed with a latch hole. A carrier device includes a carrier frame rotatably connected between the fixed plates and rotatable into and out of the receiving space through the lateral opening and having at least one first connection part, at least one locking member releasably engaged to the latch hole and including a second connection part slidably connected to the first connection part, and at least one resilient biasing element configured to bias the locking member toward the latch hole.
Abstract:
A loudspeaker noise inspection method is to be implemented by an electronic device and includes the steps of: obtaining a frequency sweeping audio signal from an audio output generated by a loudspeaker in response to a frequency sweeping input signal; performing differentiation upon the frequency sweeping audio signal so as to generate a differentiated frequency sweeping audio signal; and dividing the differentiated frequency sweeping audio signal by a constant which is greater than 2π times a maximum frequency of the frequency sweeping audio signal, so as to obtain an attenuated frequency sweeping audio signal for inspection of a noise pulse in the frequency sweeping audio signal.
Abstract:
A light emitting diode (LED) device includes: a substrate having a central portion; an LED chip unit formed on the central portion of the substrate; a circuit pattern having a positive electrode and a negative electrode that are formed on the substrate, each of the positive electrode and the negative electrode including an arc portion and at least one extending portion that extends from the arc portion toward the central portion; a wire unit connecting the LED chip unit to the extending portions; a glass layer disposed on the substrate, covering the arc portions and including an opening unit that is aligned with the central portion of the substrate; a dam structure formed on the glass layer and extending along the arc portions; and an encapsulated body disposed substantially within the dam structure to cover the extending portions, the wire unit and the LED chip unit.
Abstract:
An electrical plug device includes a housing that is formed with two receptacles, a positioning member that is disposed in the housing and that includes a base, a fixed arm unit and a flexible arm unit, and a plug member that includes a pivot rod and two plug prongs receivable in the receptacles. The base, the fixed arm unit and the flexible arm unit cooperatively define an engaging groove. The pivot rod includes a rod body pivotally received in the engaging groove and a protrusion protruding from the rod body. The plug prongs are respectively secured in position when respectively protruding out of the receptacles via detachable engagement of the protrusion with and detachable abutment of the rod body against the flexible arm unit.
Abstract:
An electric power converting device includes a rectifier, a flyback voltage converter and a non-isolated voltage regulator. The rectifier is for converting an alternating current (AC) signal received from an AC power source into a direct current (DC) signal. The flyback voltage converter is electrically connected to the rectifier for transforming voltage of the DC signal from the rectifier to output a regulated DC signal. The non-isolated voltage regulator is electrically connected to the flyback voltage converter for reducing a voltage ripple of the regulated DC signal from the flyback voltage converter and for outputting an output voltage to a load.