Abstract:
A rotatable cutting tool for applications such as road resurfacing work includes a cutting bit insert and a tool body. The cutting bit insert includes an insert body and an inner tiered protrusion integrally formed from the insert body. The inner tiered protrusion has multiple tiers. The tool body has a tiered recess that corresponds to the inner tiered protrusion to hold the inner tiered protrusion. A combination of the inner tiered protrusion and the tiered recess provides a strong connection for the cutting bit insert and the tool body and keeps stress from concentrating at a single point.
Abstract:
In accordance with a preferred embodiment of the present invention, a silicon-on-insulator (SOI) chip includes a silicon layer of a predetermined thickness overlying an insulator layer. A multiple-gate fully-depleted SOI MOSFET including a strained channel region is formed on a first portion of the silicon layer. A planar SOI MOSFET including a strained channel region formed on another portion of the silicon layer. For example, the planar SOI MOSFET can be a planar fully-depleted SOI (FD-SOI) MOSFET or the planar SOI MOSFET can be a planar partially-depleted SOI (PD-SOI) MOSFET.
Abstract:
A semiconductor device or circuit is formed on a semiconductor substrate with first and second semiconductor materials having different lattice-constants. A first transistor includes a channel region formed oppositely adjacent a source and drain region. At least a portion of the source and drain regions are formed in the second semiconductor material thereby forming lattice-mismatched zones in the first transistor. A second component is coupled to the transistor to form a circuit, e.g., an inverter. The second component can be a second transistor having a conductivity type differing from the first transistor or a resistor.
Abstract:
A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a deep source/drain region adjacent the gate electrode; a silicide region over the deep source/drain region; and an elevated metallized source/drain region between the silicide region and the gate electrode. The elevated metallized source/drain region adjoins the silicide region.
Abstract:
Sulfur-containing chalcogenide absorbers in thin film solar cell are manufactured by sequential sputtering or co-sputtering targets, one of which contains a sulfur compound, onto a substrate and then annealing the substrate. The anneal is performed in a non-sulfur containing environment and avoids the use of hazardous hydrogen sulfide gas. A sulfurized chalcogenide is formed having a sulfur concentration gradient.
Abstract:
A thin film photovoltaic cell and method for forming the same. The thin film photovoltaic cell includes a first electrode layer formed on a substrate. An absorber layer of a first dopant-type is formed on the first electrode layer. The absorber layer has an opening extending partially into the absorber layer from a top surface of the absorber layer. The opening has side walls and a bottom surface. A buffer layer of a second dopant type is formed on the top surface of the absorber layer, the side walls of the opening and the bottom surface of the opening A second electrode layer is formed on the buffer layer.
Abstract:
A semiconductor device and a method of forming the same. The semiconductor device comprises a gate structure comprising a tunnel oxide over a substrate; a floating gate over the tunnel oxide; a dielectric over the floating gate; and a control gate over the dielectric. The semiconductor device further comprises: spacers along opposite edges of the gate structure; a first impurity region doped with a first type of dopant laterally spaced apart from a first edge of the gate structure; and a second impurity region doped with a second type of dopant, opposite from the first type, the drain being substantially under the drain spacer and substantially aligned with a second edge of the gate structure.
Abstract:
A semiconductor structure includes a semiconductor substrate, and an NMOS device at a surface of the semiconductor substrate, wherein the NMOS device comprises a Schottky source/drain extension region. The semiconductor structure further includes a PMOS device at the surface of the semiconductor substrate, wherein the PMOS device comprises a source/drain extension region comprising only non-metal materials. Schottky source/drain extension regions may be formed for both PMOS and NMOS devices, wherein the Schottky barrier height of the PMOS device is reduced by forming the PMOS device over a semiconductor layer having a low valence band.
Abstract:
An electromagnetic shielding composite includes a polymer and a carbon nanotube film structure. The carbon nanotube structure includes a number of carbon nanotubes disposed in the polymer. The number of carbon nanotubes are parallel with each other.
Abstract:
A semiconductor device comprises a semiconductor mesa overlying a dielectric layer, a gate stack formed overlying the semiconductor mesa, and an isolation spacer formed surrounding the semiconductor mesa and filling any undercut region at edges of the semiconductor mesa.